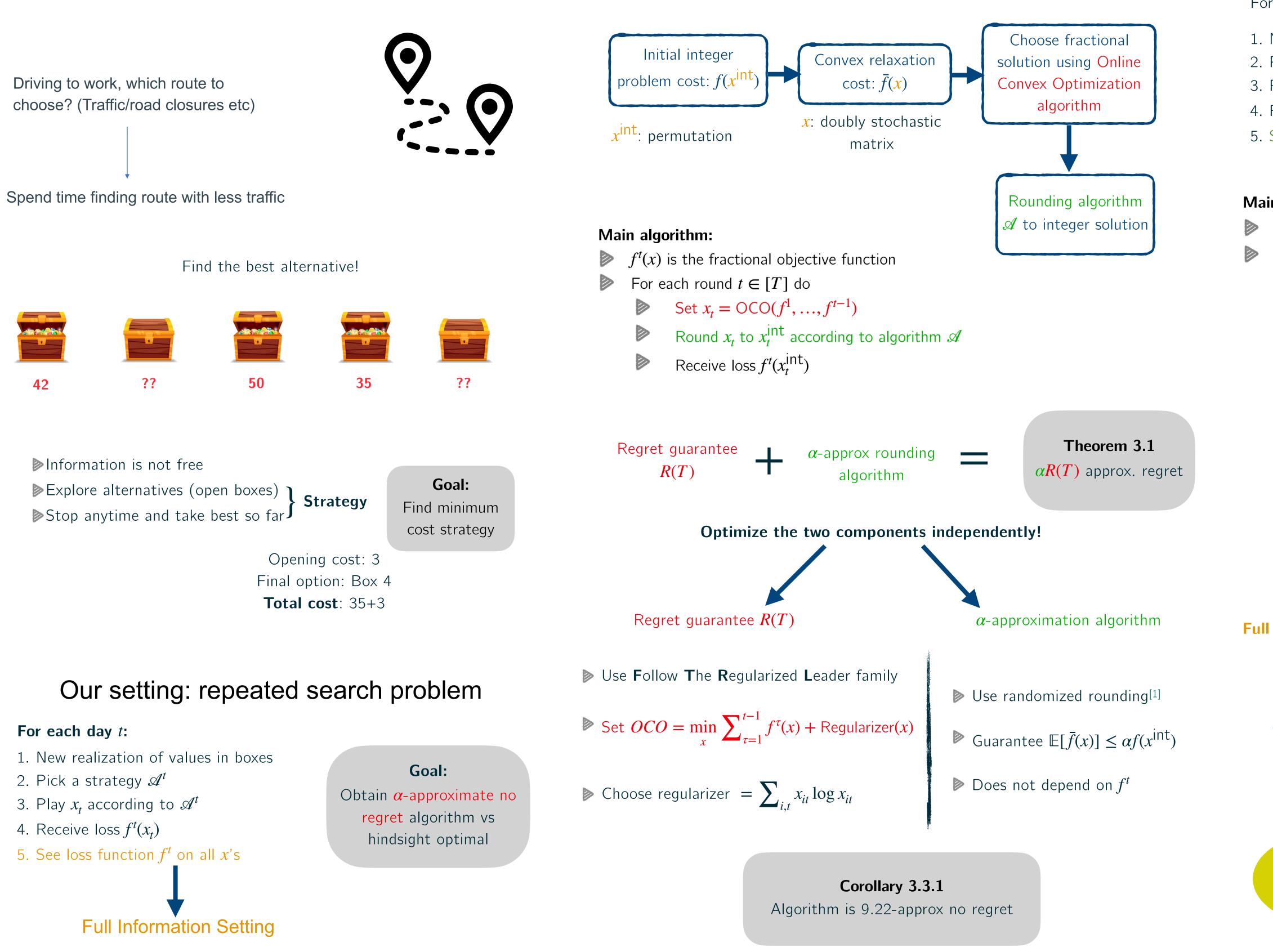
Online Learning For Pandora's Box and Min Sum Set Cover

A Search Problem



Our framework

Bandit Setting

For each day *t*:

1. New realization of values in boxes

2. Pick a strategy \mathscr{A}^t

3. Play x_t according to \mathscr{A}^t

4. Receive loss $f^t(x_t)$

5. See loss function **only** on x_t

Idea: Balance explore/FTRL steps

Main algorithm:

Split [T] into intervals \mathscr{I}_i , choose uniformly random $t_p \in [\mathscr{I}_i]$, $\mathscr{R} = \emptyset$

For each interval \mathscr{I}_i and each time $t \in \mathscr{I}_i$

If $t = t_p$

Open all boxes, include t_p in \mathscr{R}

Else

Set $x_t = \min_{x} \sum_{\tau \in \mathscr{R}} f^{\tau}(x) + \text{Regularizer}(x)$

Round x_t to x_t^{int} according to algorithm \mathscr{A}

Theorem 4.1 In the bandit setting, OCO Algorithm is no regret

Summary of Results

		1 box	k boxes	Matroid basis, size k
l information & bandit Against PA	α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
Against NA	α -approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log k)$

Different ellipsoid-based algorithm