A Search Problem

Find the best alternative!

Weitzman's algorithm gives the optimal* [Weitz 1979]

Weitzman's Algorithm:

- Calculate a reservation value σ_{i} for every box i

- Search boxes in order of increasing index until:
- Current min price seen smaller than index of next box
*Optimal for independent distributions! What about correlation?

[^0]
Correlation

Explicitly given \mathscr{D}
Can we approximate the optimal? \rightarrow (probably) Not within constant in polytime.

Why? Pandora's Box equivalent to
Uniform Decision Tree Uniform Decision Tree

- $\tilde{O}(\log m)$ in poly time
- $\tilde{O}(1 / \alpha)$ in time $n^{\tilde{O}\left(m^{\alpha}\right)}, \alpha<1$
- Cannot do better than 4 unless $\mathrm{P}=\mathrm{NP}$

Sample access to \mathscr{D}
Can we approximate the optimal? \rightarrow No: arbitrarily encode location of box

Cannot learn arbitrary mapping with finitely many queries!

Consider Partially Adaptiv $\xrightarrow[\rightarrow \text { ftrategies }]{ }$
\rightarrow adapt stopping time

> Fully Adaptiv
\rightarrow adapt order

Initial Approach

Space of PA strategies can be large! \rightarrow Scenario aware PA (SPA) SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Problem?
Algorithm too complicated!

1. Solve LP
2. Remove variables \& rescale
$\left.\begin{array}{l}\text { 3. Round LP } \\ \text { 4. Do ski rental }\end{array}\right\}$ Part 2

New Approach

Our Algorithm:

- Calculate a reservation value σ_{i} for every box i for every round

Open box b with $\min \sigma_{i}$, stop if $v_{b} \leq \sigma_{b}$
B Box is now free $c_{b}=0$

Can re-open box for free

- Update Priorwith \qquad

Claim: $\mathbb{E}\left[(\sigma-v)^{+}\right]=c$ is equivalent to $\sigma=\min _{A \in S} \frac{c_{b}|S|+\sum \nu_{b}^{s}}{|A|}$
Note: set A is scenarios with
value $<\sigma$

Restating the Algorithm

Algorithm:

- $R_{0}=$ all scenarios
() While $R_{t} \neq \varnothing$ do
- Calculate σ_{b} for each box
$\begin{array}{lc}\text { Open box } b_{t} \text { with } \min _{i \in \mathscr{A}} \sigma_{i} \text {, stop if } v_{b_{t}} \leq \sigma_{b_{t}} & \begin{array}{c}\text { We can approxilt: } \\ \text { optimal PA within the the }\end{array} \\ \text { Box is now free } c_{b}=0 & \end{array}$
B Box is now free $c_{b_{t}}=0$
- Update prior $R_{t} \leftarrow R_{t} \backslash A$

Summary of Results

Approx.
ratio

[^1]
[^0]: Simplifying Assumptions

 1. Explicitly given \mathscr{D}. Results hold within $(1+\varepsilon)$ using poly $(n, 1 / \varepsilon)$ samples
 . Unit-cost boxes
 2. Uniform scenarios
[^1]: Best Possible
 [Feige at al. APPROX '02]

