Pandora's Box with Correlations: Learning and Approximation

Shuchi Chawla ${ }^{1}$, Evangelia Gergatsouli ${ }^{1}$, Yifeng Teng ${ }^{1}$, Christos Tzamos ${ }^{1}$, Ruimin Zhang ${ }^{1}$
${ }^{1}$ University of Wisconsin-Madison

FOCS, November 2020

A Search Problem

Find the best out of n alternatives!

A Search Problem

Find the best out of n alternatives!

\mathcal{D}_{1}

\mathcal{D}_{2}

\mathcal{D}_{3}

\mathcal{D}_{4}

\mathcal{D}_{5}

- Stochastic information on price

A Search Problem

Find the best out of n alternatives!

\mathcal{D}_{2}

\mathcal{D}_{3}
4
2

\mathcal{D}_{4}
7

- Stochastic information on price
- Information is not free!

A Search Problem

Find the best out of n alternatives!

42
1

??
4

17
2

13
7

??
3

- Stochastic information on price
- Information is not free!

A Search Problem

Find the best out of n alternatives!

- Stochastic information on price
- Information is not free!
- Open boxes until decide to stop (stopping rule).
- Keep best price seen so far

Instantiation of prices $=$ scenario

A Search Problem

Find the best out of n alternatives!

17
2

13
7

??
3

- Stochastic information on price
- Information is not free!

Maximization version: max price - information cost
Minimization version: min price + information cost
This paper: focus on minimization

A Search Problem - What do we know

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

A Search Problem - What do we know

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are independent!

A Search Problem - What do we know

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are independent!
What about correlation?
Our setting: sample access, arbitrarily correlated \mathcal{D} 's

A Search Problem - What do we know

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are independent!

What about correlation?

Our setting: sample access, arbitrarily correlated \mathcal{D} 's

Related but different: Optimal Decision Tree (require small support/explicit distributions)

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price Cannot learn arbitrary mapping with finitely many samples!

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price Cannot learn arbitrary mapping with finitely many samples!

Best Strategy: decide next box after seen prices. Other strategies?

Strategies

Strategy: (1) What is next box? (2) When do I stop?

- Fully Adaptive: next box/stopping rule both adaptive
- Non-Adaptive: fixed order and stopping time
Fixed stopping time: fix a set of boxes to open all at once, decide which to pick

Strategies

Strategy: (1) What is next box? (2) When do I stop?

- Partially Adaptive: fixed order, adaptive stopping time (for independent \mathcal{D} this gives optimal policy!)

Approximating Other Strategies

- Fully Adaptive: Learning/Approximation: Hard!

Example: encoded location of best box

- Non-Adaptive:
- Learning: Hard!: tiny probability scenario has price $=\infty$ on all boxes but one \rightarrow either query all boxes or sample this scenario
- Approximation: As hard as Set Cover! For $0 / \infty$ prices \rightarrow find a 0 for every scenario \rightarrow hitting set formulation of set cover
- Partially Adaptive: Can Learn \& Efficiently approximate!

Main Theorem
Using polynomially in n sampled scenarios we can efficiently find a Partially Adaptive strategy that is $O(1)$-competitive against the optimal Partially Adaptive strategy.

Roadmap to Main Result

Space of PA strategies can be large! \rightarrow Scenario-aware PA
SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Algorithm:

1. Draw samples of scenarios
2. Design good SPA strategy using samples
3. Find stopping rule that performs well

Roadmap to Main Result

Space of PA strategies can be large! \rightarrow Scenario-aware PA
SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.
Proof Sketch: Assume a SPA order \rightarrow need to find a stopping rule for PA. Stop when best price seen so far is at most time spent until now.

${ }^{a}$ Argument is equivalent to Ski-Rental \rightarrow can get 1.58 using ski rental algorithm

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.

Focus on SPA then convert to PA losing a factor of 2.

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma
Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma
Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Proof Sketch.
Possible permutations: n !
Each permutation has bounded cost \rightarrow can learn with few samples \rightarrow union bound on all n ! permutations.

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma
Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Enough to find good SPA strategies!

Roadmap to Main Result

Algorithm:

1. Draw samples of scenarios (Learning Lemma)
2. Design good SPA strategy using samples (Main Algorithm)
3. Find stopping rule that performs well (Myopic Stopping Lemma)

Main Result: SPA vs PA

This talk: Focus on SPA vs NA

PA vs NA - LP Formulation

$$
\begin{array}{rlrl}
\operatorname{minimize} & \sum_{i \in \mathcal{B}} x_{i} & +\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{B}, s \in \mathcal{S}} c_{i s} z_{i s} & \quad \forall \mathrm{LF} \\
\text { subject to } & \sum_{i \in \mathcal{B}} z_{i s}=1, & \forall i \in \mathcal{B}, s \in \mathcal{S} \tag{1}\\
& z_{i s} \leq x_{i}, & \forall i \in \mathcal{B}, s \in \mathcal{S}
\end{array}
$$

x_{i} : indicates whether box i is opened
$z_{i s}$: indicates whether box i is assigned to scenario s
$c_{i s}$: price in box i for scenario s

PA vs NA - Algorithm

Given: Solution $\boldsymbol{x}, \boldsymbol{z}$ to LP, scenario s

1. Open box iwp $\frac{x_{i}}{\sum_{i \in \mathcal{B}} x_{i}}$
2. If box i is opened, select the box and stop wp $\frac{z_{i s}}{x_{i}}$

Analysis: Bound probing cost + price

- Part 1: bound probing cost

$$
\operatorname{Pr}[\text { stop at step } t]=\sum_{i \in \mathcal{B}} \frac{x_{i}}{\sum_{i \in \mathcal{B}} x_{i}} \frac{z_{i s}}{x_{i}}=\frac{\sum_{i \in \mathcal{B}} z_{i s}}{\sum_{i \in \mathcal{B}} x_{i}}=\frac{1}{\mathrm{OPT}_{t}},
$$

Probing cost is optimal on expectation

PA vs NA - Analysis

- Part 2: bound the price

For scenario s

$$
\begin{aligned}
\mathbf{E}\left[\mathrm{ALG}_{c, s}\right] & =\sum_{i \in \mathcal{B}, t} \operatorname{Pr}[\text { select } i \text { at } t \mid \text { stop at } t] \operatorname{Pr}[\text { stop at } t] c_{i s} \\
& \leq \sum_{i \in \mathcal{B}, t} \frac{z_{i s}}{\sum_{i \in \mathcal{B}} z_{i s}} \operatorname{Pr}[\text { stop at } t] c_{i s} \\
& =\sum_{i \in \mathcal{B}} z_{i s} c_{i s} \\
& =\mathrm{OPT}_{c, s}
\end{aligned}
$$

Take expectation over all scenarios $\mathbf{E}\left[\mathrm{ALG}_{c}\right] \leq \mathrm{OPT}_{c}$ SPA Approximates NA \rightarrow lose a 2-factor to convert to PA

Summary - Extensions

Showed: Can approximate NA with PA within 2.

Summary - Extensions

Showed: Can approximate NA with PA within 2. Other settings?

	Choose 1	Choose k	Matroid rank k
PA vs PA (Upper-bound)	9.22	$O(1)$	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Summary - Extensions

Showed: Can approximate NA with PA within 2. Other settings?

	Choose 1	Choose k	Matroid rank k
PA vs PA (Upper-bound)	9.22	$O(1)$	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Main Result: related to Min Sum Set Cover [Feige et al. 2002]
Choose k, matroid: Related to Generalized Min Sum Set Cover [Bansal et al. 2010 \& Skutella, Williamson 2011]

Summary - Extensions

Showed: Can approximate NA with PA within 2. Other settings?

	Choose 1	Choose k	Matroid rank k
PA vs PA (Upper-bound)	9.22	$O(1)$	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Main Result: related to Min Sum Set Cover [Feige et al. 2002]
Choose k, matroid: Related to Generalized Min Sum Set Cover [Bansal et al. 2010 \& Skutella, Williamson 2011]

Maximization: Cannot approximate the Non-Adaptive using a Fully Adaptive within any constant.

Future directions

Our work: tradeoff adaptivity vs computational complexity
Future Directions:

- What can we approximate by fully adaptive strategies?
- Can we get adaptive algorithms for more general combinatorial problems?

Future directions

Our work: tradeoff adaptivity vs computational complexity
Future Directions:

- What can we approximate by fully adaptive strategies?
- Can we get adaptive algorithms for more general combinatorial problems?

Thank you!

