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Overview - Motivation

» Example 1: the deadline is approaching!
- Delete sentence
ICML Page limit: 10 —

v

11 pages 12 pages

» Example 2: hyperparameter tuning

Add layers .

How do we fix monotonicity,

]

. '@ N
S

© in a black box way?

error k error 3k
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Our Model

X
What is f(x)? > 5
f(x) 0[3[2[6]5 [4]7
y — X
Example for 1 dimension
f(x) =1 or 7 may not be feasible but
» [ might not be monotone! f'(x) = 6 is feasible

» Change fto be monotone & satisfy feasibility

» Feasibility: Unclear what solutions/values are

feasible
«  Solutions for smaller inputs feasible for larger ones

*  Outputany f(y) from y <=z
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Our Model
Ask f for points 1,2 . ..

X
What is f(x)? > . >
) £%) eta-Algo/Filter

» Idea 1:f =0 for all inputs » Idea 2: f' = maxy<, f(y)
-+ f monotone y * f monotone v,
- f'better than f X * [betterthanf '
*  Filter is query efficient *  Filter is query efficient X
0132|6547 0326|547
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Our Model

What is f(x)? >
fx)

Meta-Algo/Filter < >

Ask f for points £1,Z2 . . .

Goals:

» [ monotone!

» Feasible

» E[f'] better than E[f]
» Query efficient
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Model

Black box Reductions
for Mechanism Design

>Transform algo to
preserve expected
performance

>Black box access to
initial algo

[Hartline, Lucier2010]
[Bei, Huang 2011]
[Hartline et al. 2015]
[Dughmi et al. 2017]

>Ensure truthfulness
(related to monoton.)

Property Reconstruction

>Algo acts as filter to
ensure property

>Measure: Query
Complexity

>Error is distance of
new to old function
>Not always local

Our Model

[Ailon et al. 2008]

[Saks, Seshadhri 2010]
[Bhattacharyya, et al. 2012]
[Jha, Raskhodnikova 2013]
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Local Computation Algorithms

>Answer queries online
>Stay consistent with
specific solution
>Do not remember old
answers
>Use local info

[Rubinfeld et al. 2011]
[Alon et al. 2012]
[Mansour Vardi 2013]
[Levi et al. 2014]
[Parter et al. 2019]



Our Results

Theorem 1: There is a meta-algorithm that “monotonizes” any univariate function and

1. Is feasible
2. Has expected performance loss at most €
3. Uses at most O(log2) queries.

The algorithm extends to d-variate functions and uses at most O(log £)? queries

Theorem 2: Any meta-algorithm that “monotonizes” functions with non-trivial
performance guarantees must make exponential in d queries.
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Our Results

We can escape this exponential hardness by considering a weaker notion of monotonicity:
monotonicity of marginals

Theorem 3: There is a meta-algorithm that corrects k marginal monotonicity of any f and

1. Is feasible
2. Has expected loss at most €
3. Uses at most (d/¢)°® queries.

This talk; focus on Theorems 1+2
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Formal Model

» Oracleaccessto f:R% —[0,1]

» Input X = (5131 . --CUd)
«  Product distribution D

» Monotonicity: f(x) < f(y) whenever x <y coordinate-wise
«  Marginal monotonicity: fi(zi) = B .~p_[f(zi;z-)] is monotone

k-marginal monotonicity: for any subset 7 of coordinates,
f1(21) = E:;[fz(21,2-1)] is monotone

E. Gergatsouli, B. Lucier, C. Tzamos



Discretization

» Output f(z)a piece-wise constant function
« Splitinto 1/¢ pieces of equal probability

« Define

0 x e I
f(mi_l) x € I; (I) I I | | |
| S

for a random Ti—1drawn from fLi-1

« isfeasible
* loses at most € in expectation

» We only need to monotonize f () which is discrete
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Monotonicity in 1 dimension

» Inputx

» Randomly permute points {1,...,1/¢} ) "
» Keep track of Lower & Upper bounds (Li, U;) = (—o0, c0) 1 z

> Keep track of relevant interval ¢, k] = (0,4] T { X

Figure 1: Function before fixing monotonicity
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Monotonicity in 1 dimension

Lower & Upper bounds (—oo, o)
Relevant interval[£, h] = [0, 4]

®
f(@) !
» Pick next point 7; in permutation i !
« Ifz > m then |
m  new Bounds: (f(m1),00)
m  Relevantinterval is [m + 1,h] = [2,4]
¢ lfx < ﬂ-i fTI;; ..'Tll Tl.lr, e My

Figure 2: Function after processing m;
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Monotonicity in 1 dimension

Lower & Upper bounds (f(m1), 00)
Relevant interval (¢, h] = (2, 4]

f(z) ! !
.
» Pick next point 7; in permutation !
 If x < m; then
m  new Bounds: (f(m1), f(m2)) | | |
m  Relevantintervalis [¢,m — 1] = [2,2] 3 ! s T2 4

Figure 3: Function after processing my
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Many Dimensions

» Fix monotonicity in every dimension, how? 4

{

)

Key Lemma: Given a function monotone in the first i-1
dimensions, we can fix i'th without violating the i-1

|

[

» Pick permutations from the beginning
» Starting from f, fix every dimension sequentially
- fi Function with the first i dimensions “fixed” x
fo — f1 — ... fg — output:

» Query complexity

~

O(log g)d
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Lower Bound

p For some domain and distribution 1X| < 4d/10

» Original function f*, has high

expectation SIS 7D @
» Randomized functions fsr based on
random sets S, T
Fe Ier fhr

> Tsr has low expectation, Tsr has high

» Cannot distinguish between fsr and For
With fewer than exponential queries

» Cannot distinguish between fsr and f*
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Conclusion & Open problems

» Analgorithm to fix non-monotonicity in d dimensions with black-box queries
» Unavoidable exponential dependenceind

» Relaxed versions of monotonicity (k-Marginal Monotonicity) fixable efficiently

Open problems:

p Correlated coordinate distributions?

» Other properties beyond monotonicity?
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