# Black-Box Methods for Restoring Monotonicity

Evangelia Gergatsouli<sup>1</sup>, Brendan Lucier<sup>2</sup>, Christos Tzamos<sup>1</sup>

<sup>1</sup>University of Wisconsin-Madison

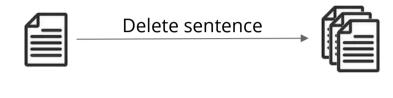
<sup>2</sup>Microsoft Research

ICML, July 2020

### **Overview - Motivation**

*Example 1: the deadline is approaching!* 

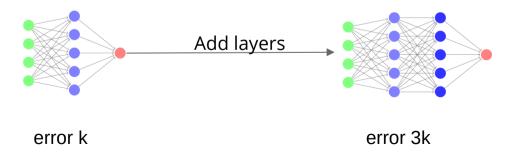
ICML Page limit: 10



11 pages

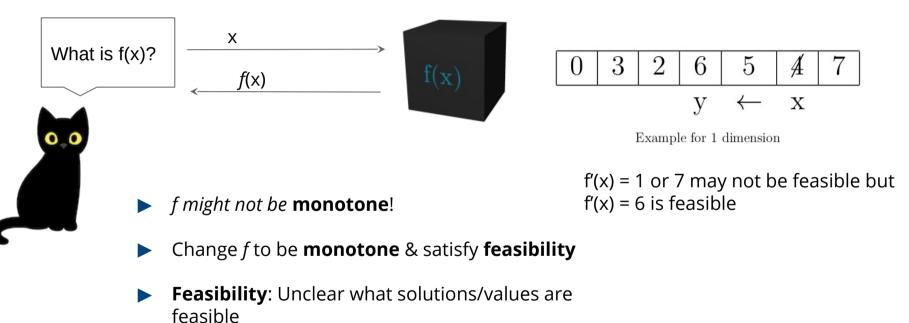


Example 2: hyperparameter tuning



How do we fix monotonicity, in a black box way?

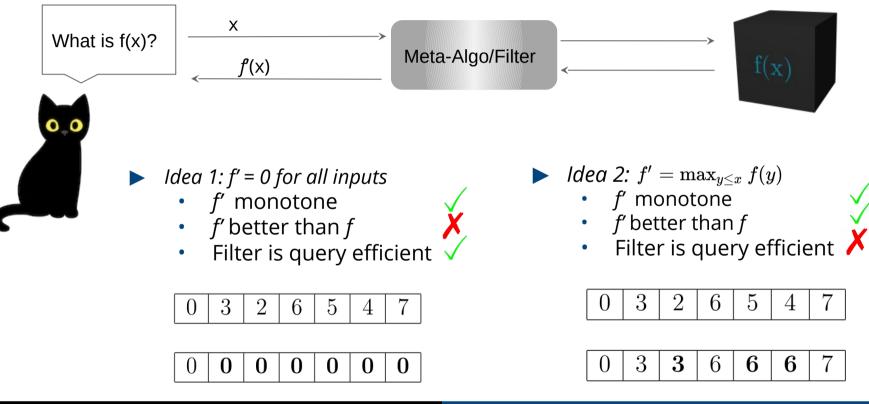
# Our Model



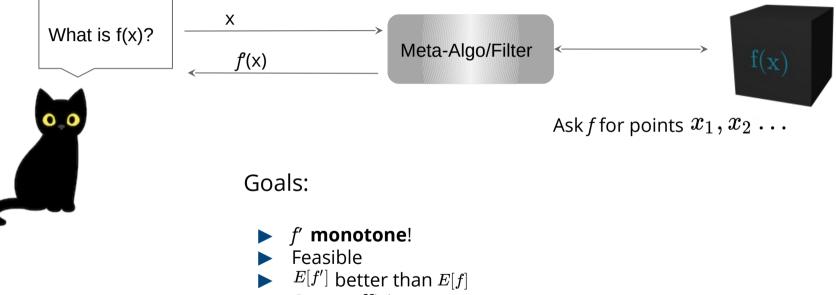
- Solutions for smaller inputs feasible for larger ones
- Output any f(y) from  $y \leq x$

## Our Model

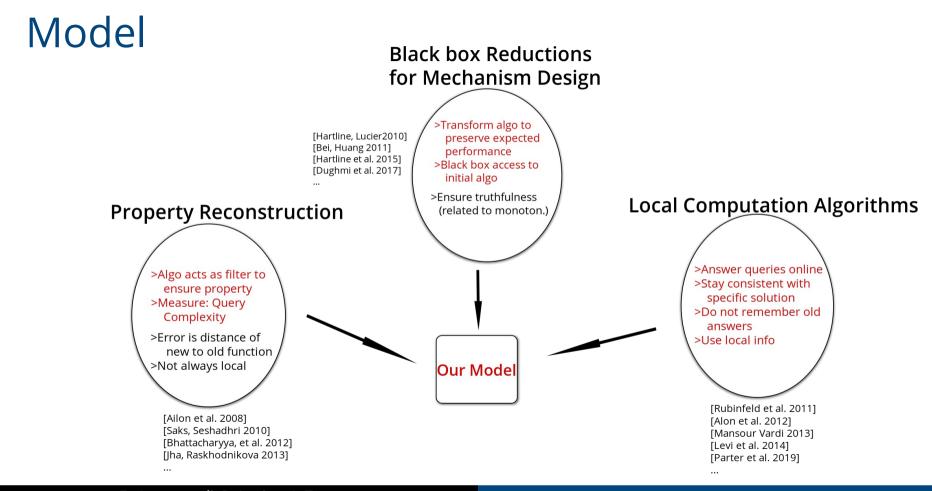
Ask f for points  $x_1, x_2 \dots$ 



## Our Model



Query efficient



### **Our Results**

Theorem 1: There is a meta-algorithm that "monotonizes" any univariate function and

- 1. Is feasible
- 2. Has expected performance loss at most  $\varepsilon$
- 3. Uses at most  $O(\log \frac{1}{\varepsilon})$  queries.

The algorithm extends to **d**-variate functions and uses at most  $O(\log \frac{d}{\varepsilon})^d$  queries

Theorem 2: Any meta-algorithm that "monotonizes" functions with non-trivial performance guarantees must make exponential in **d** queries.



We can escape this exponential hardness by considering a weaker notion of monotonicity: monotonicity of marginals

Theorem 3: There is a meta-algorithm that corrects k marginal monotonicity of any f and

- 1. Is feasible
- 2. Has expected loss at most  $\varepsilon$
- 3. Uses at most  $(d/\varepsilon)^{O(k)}$  queries.

#### This talk: focus on **Theorems 1+2**

### Formal Model

- $\blacktriangleright$  Oracle access to  $f: \mathbb{R}^d 
  ightarrow [0,1]$
- ► Input  $\mathbf{x} = (x_1 \dots x_d)$ 
  - Product distribution  ${\cal D}$
- Monotonicity:  $f(x) \le f(y)$  whenever  $x \le y$  coordinate-wise
  - Marginal monotonicity:  $f_i(x_i) = E_{x_{-i} \sim \mathcal{D}_{-i}}[f(x_i, x_{-i})]$  is monotone
  - k-marginal monotonicity: for any subset  $\mathcal{I}$  of coordinates,  $f_{\mathcal{I}}(x_{\mathcal{I}}) = E_{x_{-\mathcal{I}}}[f_{\mathcal{I}}(x_{\mathcal{I}}, x_{-\mathcal{I}})]$  is monotone

# Discretization

• Output  $\tilde{f}(x)$  a piece-wise constant function

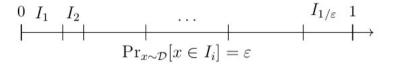
- Split into 1/ε pieces of equal probability
- Define

$$ilde{f}\left(x
ight)=egin{cases} 0 & x\in I_1\ f(x_{i-1}) & x\in I_i \end{cases}$$

for a random  $x_{i-1}$  drawn from  $I_{i-1}$ 

 $\blacktriangleright \quad \tilde{f}(x):$ 

- is feasible
- loses at most ε in expectation
- We only need to monotonize  $ilde{f}(x)$  which is discrete



# Monotonicity in 1 dimension

Input x

- Randomly permute points  $\{1, \ldots, 1/\varepsilon\}$
- Keep track of Lower & Upper bounds  $(L_i, U_i) = (-\infty, \infty)$
- Keep track of *relevant interval*  $[\ell, h] = [0, 4]$

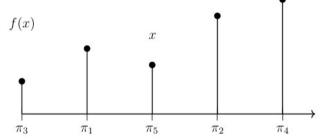


Figure 1: Function before fixing monotonicity

# Monotonicity in 1 dimension

Lower & Upper bounds  $(-\infty,\infty)$ Relevant interval $[\ell,h]=[0,4]$ 

- Pick next point  $\pi_i$  in permutation
  - If  $x > \pi_i$  then

...

- new Bounds:  $(f(\pi_1), \infty)$
- Relevant interval is  $[\pi_i + 1, h] = [2, 4]$
- If  $x < \pi_i$

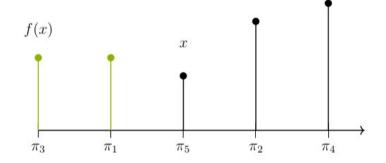


Figure 2: Function after processing  $\pi_1$ 

# Monotonicity in 1 dimension

Lower & Upper bounds  $(f(\pi_1), \infty)$ Relevant interval $[\ell, h] = [2, 4]$ 

- Pick next point  $\pi_i$  in permutation
  - •••
  - If  $x < \pi_i$  then
    - new Bounds:  $(f(\pi_1), f(\pi_2))$
    - Relevant interval is  $[\ell, \pi_i 1] = [2, 2]$

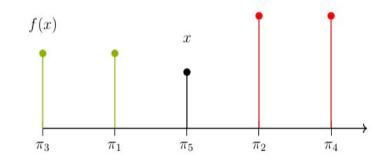


Figure 3: Function after processing  $\pi_2$ 

# Many Dimensions

Fix monotonicity in every dimension, how?

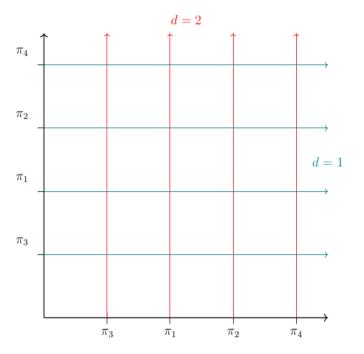
Key Lemma: Given a function monotone in the first i-1 dimensions, we can fix i'th without violating the i-1

- Pick permutations from the beginning
- Starting from f, fix every dimension sequentially  $f_i$  Function with the first i dimensions "fixed"

 $f_0 \rightarrow f_1 \rightarrow \dots f_d \rightarrow \text{output}$ 

Query complexity

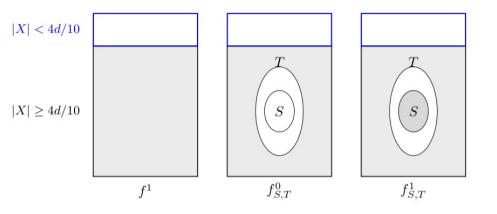
 $O(\log \frac{d}{\epsilon})^d$ 



## Lower Bound

For some domain and distribution

- Original function f<sup>1</sup>, has high expectation
- Randomized functions  $f_{ST}^z$  based on random sets S, T
- $f_{ST}^0$  has low expectation,  $f_{ST}^1$  has high
- Cannot distinguish between  $f_{ST}^0$  and  $f_{ST}^1$
- $\blacktriangleright$  Cannot distinguish between  $f_{ST}^1$  and  $f^1$  -



With fewer than exponential queries

# Conclusion & Open problems

- An algorithm to fix non-monotonicity in d dimensions with black-box queries
- Unavoidable exponential dependence in d
- Relaxed versions of monotonicity (k-Marginal Monotonicity) fixable efficiently

### Open problems:

- Correlated coordinate distributions?
- Other properties beyond monotonicity?

