COSTLY EXPLORATION: GRAPH CONNECTIVITY WITH NOISY QUERIES

Evangelia Gergatsouli
University of Wisconsin-Madison

Nov 152022

Model

Oracle

- Initial graph G
- Adversary deletes edges
* Noisy Oracle answers questions of the form "Does edge e exist"?

Model

Model

Model

Error Regimes

2-sided error

Oracle's answer
Truth

Error Regimes

1-sided errors

2-sided error

Oracle's answer
Truth

Error Regimes

1-sided errors

2-sided error

Oracle's answer

Truth

False Negatives (FN)

Oracle's answer
Truth

False Positives (FP)
Oracle's answer Truth

Probability of error is $p<1 / 2$

Previous Work

Roadmap

	General Graphs
2-sided error	$\Theta(m \log m)$
1-sided error (False Positives)	$O(m \log m)$
1-sided error (False Negatives)	$\Theta(m \log m)$

Roadmap

	General Graphs	
2-sided error	$\Theta(m \log m)$	
1-sided error (False Positives)	$O(m \log m)$	L-sided error (False Negatives)

Roadmap

	General Graphs		
2-sided error	$\Theta(m \log m)$		
1-sided error (False Positives)	$O(m \log m)$	$O(m)$ if realized graph is acyclic	
1-sided error (False Negatives)	$\Theta(m \log m)$	$O(\rho m)$ if G is ρ-sparse	Special cases also tight

2-sided Error - Algorithm

Algorithm:

Query every edge of moldgraph $\log m$ times
B Every $e \in E$ with more "Yes" is treated as realized
If graph connected
Output graph

Else

Output any spanning tree of moldgraph

2-sided Error - Algorithm

Algorithm:

Query every edge of moldgraph $\log m$ times
B Every $e \in E$ with more "Yes" is treated as realized
If graph connected
Output graph

Else

Output any spanning tree of moldgraph

2-sided Error - Lower Bound

Moldgraph G

Observations:

Each pair is independent of others (each pair is a cut)
If less than $\log m$ queries per pair \rightarrow error w.h.p.

2-sided Error - Lower Bound

Moldgraph G

Observations:

No algorithm can do better than $\Omega(m \log m)$ queries

Each pair is independent of others (each pair is a cut)

If less than $\log m$ queries per pair \rightarrow error w.h.p.

1-sided, False Negatives

Observations:

B Every realized edge, will eventually give a "Yes" answer
Bvery cut of G contains at least one realized edge
Cuts are small in sparse graphs

$$
\begin{gathered}
\rho \text {-sparse: } \\
\text { edges } \leq \rho \cdot \text { nodes }
\end{gathered}
$$

1-sided, False Negatives

Observations:

Idea 1: can naively

Every realized edge, will eventually give a "Yes" answer

Every cut of G contains at least one realized edge

Idea 2: only need to find one edge per cut

$$
\begin{gathered}
\rho \text {-sparse: } \\
\text { edges } \leq \rho \cdot \text { nodes }
\end{gathered}
$$

1-sided, False Negatives

Idea 2: only need
 to find one edge
 per cut

1-sided, False Negatives

Naive algorithm:

Round-robin query all edges until there is spanning tree

Sparse graphs algorithm:

While (graph has more than 1 nodes)
B Find min degree node $u \in V$
For every "Bag of edges" neighboring u
Select random edge to query
B Find realized edge e and contract it

1-sided, False Negatives

Naive algorithm:

Round-robin query all edges until there is spanning tree

Sparse graphs algorithm:

While (graph has more than 1 nodes)
B Find min degree node $u \in V$
For every "Bag of edges" neighboring u
Select random edge to query
B Find realized edge e and contract it

Algorithm finds a sp. tree using $O(m \log m)$ queries.
If graph is ρ-sparse then uses $O(\rho m)$ queries

1-sided, False Positives

Observations:

Every non-realized edge, will eventually give a "No" answer

Idea 1: can naively
ask about every edge
Dual graph:
Node per face of G
Edge if faces in G are separated by edge

Original G
Dual G^{\prime}

1-sided, False Positives

Observations:

Every non-realized edge, will eventually give a "No" answer

$$
\longrightarrow \text { Idea 1: can naively } \begin{gathered}
\text { ask about every } \\
\text { edge }
\end{gathered}
$$

If realized graph is tree $\& G$ is planar
B Every cycle of G contains at least one non-realized edge

\longrightarrow| Idea 2: can use FN |
| :---: |
| algorithm in dual |
| graph |

1-sided, False Positives

Naive algorithm:
While there's no tree:
 robin

Acyclic graph algorithm:

B Construct the dual G^{\prime} of initial graph
B Run FN algorithm on dual G^{\prime}
Beturn complement of edges

1-sided, False Positives

Naive algorithm:

While there's no tree:
 robin

Acyclic graph algorithm:

B Construct the dual G^{\prime} of initial graph
B Run FN algorithm on dual G^{\prime}
B Return complement of edges

Algorithm finds a sp. tree w.h.p. with $O(m \log m)$ queries. If G planar and realized graph is tree then $O(m)$ queries

Summary

	General Graphs
2-sided error	$\Theta(m \log m)$
1-sided error (False Positives)	$O(m \log m)$
1-sided error (False Negatives)	$\Theta(m \log m)$

Summary

A More General Problem

Find MST on weighted graphPay to learn weights (explore alternatives)Stop anytime and take best so far

A More General Problem

Find the best alternative, with costly information!

* Pay to learn weights (explore alternatives)

Constraint: edges should be a tree

A More General Problem

Find the best alternative, with costly information!

Pay to learn weights (explore alternatives)
Constraint: edges should be a tree

A More General Problem

Find the best alternative, with costly information!

Pay to learn weights (explore alternatives)
Constraint: edges should be a tree

Pandora's Box

Find the best alternative, with costly information!

??

??

??

??

??

Information is not free
Explore alternatives (open boxes) $\left.\begin{array}{l}\text { Stop anytime and take best so far }\end{array}\right\}$ Strategy

Pandora's Box

Find the best alternative, with costly information!

Information is not free
(Explore alternatives (open boxes) $\left.\begin{array}{l}\text { Stop anytime and take best so far }\end{array}\right\}$ Strategy

Pandora's Box

Find the best alternative, with costly information!

Information is not free
$\left.\begin{array}{l}\text { Explore alternatives (open boxes) } \\ \text { Stop anytime and take best so far }\end{array}\right\}$ Strategy

Goal:

Find minimum cost strategy

Pandora's Box

Find the best alternative, with costly information!

Information is not free
$\left.\begin{array}{l}\text { Explore alternatives (open boxes) } \\ \text { Stop anytime and take best so far }\end{array}\right\}$ Strategy

Goal:

Find minimum cost strategy

Previous work

Weitzman's algorithm gives the optimal! [Weitz 1979]

Algorithm:

Bssign an expected gain index ${ }^{1}$ to every box
Search boxes in order of index until:
Current price better than index of next box

Previous work

Weitzman's algorithm gives the optimal! [Weitz 1979]

Algorithm:

B Assign an expected gain index ${ }^{1}$ to every box
Search boxes in order of index until:
Current price better than index of next box

Crucial assumption: distributions are independent!

What about correlation?

Our work

Our work

Our work

Conclusion

Thank you!

