COSTLY EXPLORATION: GRAPH CONNECTIVITY WITH NOISY QUERIES

Evangelia Gergatsouli University of Wisconsin-Madison

Nov 15 2022

<u>Based on joint work with</u>: Dimitris Fotakis¹, Charilaos Pipis¹, Miltos Stouras², Christos Tzamos³ ¹NTUA, ²EPFL, ³UW Madison

Moldgraph G

Evangelia Gergatsouli

Model

Realized graph

Oracle

▶ Initial graph G Adversary deletes edges Noisy Oracle answers questions of the form "Does edge e exist"?

Model

Realized graph

Oracle

▶ Initial graph G Adversary deletes edges Noisy Oracle answers questions of the form "Does edge e exist"?

Model

Oracle

Noisy Oracle answers questions of the form "Does edge e exist"?

Model

Realized graph

Goal: find a spanning tree with minimal number of queries to ${\cal O}$

Oracle

2-sided error

Evangelia Gergatsouli

Error Regimes

1-sided errors

Previous Work

MST verification, under uncertainty [Hoffman er al. '08, Erlebach et al. '14]

Evangelia Gergatsouli

Clustering with Noisy queries

Only handle consistent answers to queries

	General G
2-sided error	$\Theta(m \log$
1-sided error (False Positives)	O(m log
1-sided error (False Negatives)	$\Theta(m \log$

Roadmap

	General G
2-sided error	$\Theta(m \log$
1-sided error (False Positives)	O(m log
1-sided error (False Negatives)	$\Theta(m \log$

Roadmap

	General G
2-sided error	$\Theta(m \log$
1-sided error (False Positives)	<i>O</i> (<i>m</i> log
1-sided error (False Negatives)	$\Theta(m \log$

Roadmap

Algorithm:

- \gg Query every edge of moldgraph $\log m$ times
- Every $e \in E$ with more "Yes" is treated as realized
- **If** graph connected
 - Output graph

Else

Output any spanning tree of moldgraph

2-sided Error - Algorithm

Algorithm:

- \triangleright Query every edge of moldgraph $\log m$ times
- Every $e \in E$ with more "Yes" is treated as realized
- **If** graph connected
 - Output graph

Else

Output any spanning tree of moldgraph

2-sided Error - Algorithm

Algorithm finds a spanning tree w.h.p. using $O(m \log m)$ queries

2-sided Error - Lower Bound

Moldgraph G

Observations:

Each pair is independent of others (each pair is a cut)

If less than $\log m$ queries per pair \rightarrow error w.h.p.

Evangelia Gergatsouli

2-sided Error - Lower Bound

Moldgraph G

Observations:

Each pair is independent of others (each pair is a cut)

If less than $\log m$ queries per pair \rightarrow error w.h.p.

Evangelia Gergatsouli

No algorithm can do better than $\Omega(m \log m)$ queries

1-sided, False Negatives

Observations:

Cuts are small in sparse graphs

 ρ -sparse:

Evangelia Gergatsouli

edges $\leq \rho \cdot \text{nodes}$

1-sided, False Negatives

Observations:

Cuts are small in sparse graphs

 ρ -sparse:

Evangelia Gergatsouli

Idea 1: can naively ask about every edge

Idea 2: only need to find one edge per cut

edges $\leq \rho \cdot \text{nodes}$

1-sided, False Negatives

Idea 2: only need to find one edge per cut

Evangelia Gergatsouli

Naive algorithm:

Round-robin query all edges until there is spanning tree

Evangelia Gergatsouli

Sparse graphs algorithm:

For every "Bag of edges" neighboring *u*

Select random edge to query

Find realized edge e and contract it

Naive algorithm:

Round-robin query all edges until there is spanning tree

> Algorithm finds a sp. tree using $O(m \log m)$ queries. If graph is ρ -sparse then uses $O(\rho m)$ queries

Evangelia Gergatsouli

Sparse graphs algorithm:

Select random edge to query

Find realized edge *e* and contract it

Observations:

Every non-realized edge, will eventually give a "No" answer _____ *Idea 1: can naively*

Dual graph:

Node per face of G

Edge if faces in G are separated by edge

Evangelia Gergatsouli

1-sided, False Positives

Observations:

Every non-realized edge, will eventually give a "No" answer _____ Idea 1: can naively ask about every edge

If realized graph is tree & G is planar

 \triangleright Every cycle of G contains at least one **non**-realized edge _____

 \triangleright Cycles in initial graph \equiv Cuts in the dual graph

1-sided, False Positives

Idea 2: can use FN algorithm in dual graph

Naive algorithm:

- While there's no tree:
- Ask about next edge eRound

robin **If** answer is "*No*" mark as non-realized

Else mark as realized

Evangelia Gergatsouli

Acyclic graph algorithm:

- \triangleright Construct the dual G' of initial graph
- \triangleright Run FN algorithm on dual G'
- Return complement of edges

Naive algorithm:

While there's no tree:

Ask about next edge eRound

robin **If** answer is "*No*" mark as non-realized

Else mark as realized

Algorithm finds a sp. tree w.h.p. with $O(m \log m)$ queries. If G planar and realized graph is tree then O(m) queries

Evangelia Gergatsouli

Acyclic graph algorithm:

 \triangleright Construct the dual G' of initial graph

Return complement of edges

	General G
2-sided error	$\Theta(m \log$
1-sided error (False Positives)	O(m log
1-sided error (False Negatives)	$\Theta(m \log$

Summary

	General G
2-sided error	$\Theta(m \log$
1-sided error (False Positives)	O(m log
1-sided error (False Negatives)	$\Theta(m \log$

Summary

- Find MST on weighted graph
- Pay to learn weights (explore alternatives)
- Stop anytime and take best so far

A More General Problem

Find the best alternative, with costly information!

Evangelia Gergatsouli

Pay to learn weights (explore alternatives) **Constraint**: edges should be a tree

A More General Problem

Find the best alternative, with costly information!

Evangelia Gergatsouli

Pay to learn weights (explore alternatives)

A More General Problem

Find the best alternative, with costly information!

Evangelia Gergatsouli

Pay to learn weights (explore alternatives)

▶ Information is not free

- Explore alternatives (open boxes)
 Stop anytime and take best so far

Evangelia Gergatsouli

Find the best alternative, with costly information!

??

??

▶ Information is not free

- Explore alternatives (open boxes)
 Stop anytime and take best so far

Evangelia Gergatsouli

Find the best alternative, with costly information!

\$12

??

Opening cost: 3 Final option: box 4 Total cost: 12+3

▶ Information is not free

- Explore alternatives (open boxes)
 Stop anytime and take best so far

Evangelia Gergatsouli

Find the best alternative, with costly information!

\$12

??

Opening cost: 3 Final option: box 4 Total cost: 12+3

Goal: Find minimum cost strategy

Find the best alternative, with costly information!

▶ Information is not free

- Explore alternatives (open boxes)
 Stop anytime and take best so far

Evangelia Gergatsouli

Opening cost: 3 Final option: box 4 Total cost: 12+3

Previous work

Weitzman's algorithm gives the optimal! [Weitz 1979]

Algorithm:

Solution Assign an *expected gain* index¹ to every box

Search boxes in order of index until:

Current price better than index of next box

¹Gittins index/reservation value

Evangelia Gergatsouli

Previous work

Weitzman's algorithm gives the optimal! [Weitz 1979]

Algorithm:

Section Assign an *expected gain* index¹ to every box

Search boxes in order of index until:

Current price better than index of next box

Crucial assumption: distributions are **independent**!

What about **correlation**?

¹Gittins index/reservation value

Evangelia Gergatsouli

sample access to \mathscr{D} Can sample scenarios

explicitly given \mathscr{D} Scenarios given explicitly

solve problem over *T* rounds Scenarios arrive online

solve over T rounds, with context Scenarios arrive online

Our work

Evangelia Gergatsouli

sample access to \mathscr{D} Can sample scenarios

explicitly given *D* Scenarios given explicitly

Constant competitive choosing k, log(rank) for matroids

Reduction to Optimal Decision *Tree* types of problems

solve problem over T rounds Scenarios arrive online

solve over T rounds, with context Scenarios arrive online

Obtain **no-regret** algorithms

Our work

Evangelia Gergatsouli

sample access to \mathscr{D} Can sample scenarios

[Chawla, <u>G</u>, Teng, Tzamos, Zhang FOCS '20]

[Chawla, <u>G</u>, McMahan, Tzamos

ArXiv '21]

explicitly given D Scenarios given explicitly

solve problem over *T* rounds Scenarios arrive online

[<u>G</u>, Tzamos ICML '22]

solve over T rounds, with context Scenarios arrive online

[Atsidakou, Caramanis, <u>G</u>, Papadigenopoulos, Tzamos ArXiv '22]

Thank you!

Evangelia Gergatsouli

Conclusion

