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Mechanism Design for Welfare

$42 $13

▶ n agents, m items
▶ Agent i has private

value vi(S) for set S
of items

▶ Feasibility constraint
F (e.g. at most 2
items per agent)

▶ Goal: allocate items
to maximize welfare

Mechanism M: Given reported values v′ decide:

▶ Allocation rule A: how to give out items

▶ Payment rule P: Who pays what
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Black-Box Mechanism Design
Algorithmic problem: Find allocation rule A that maximizes welfare
Can we turn this into truthful mechanism?

M
A Allocation A′

Payment P
v′ : Values
submitted

▶ If A maximizes welfare exactly in poly-time
Implement the allocation of A + charge suitable payments
→ VCG is truthful! [Vickrey 1961, Clarke 1971, Groves 1973]

▶ If A only approximately maximizes welfare
→ VCG is not truthful!
→ There may not exist P such that M(A, P) is truthful.
→ Goal: find a modified allocation A′ and truthful payments?

Is designing truthful M harder than the algorithmic problem?
One possible answer: Black Box reductions!
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Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

▶ Returns feasible allocations

Many different flavours to the problem:

1. Worst Case performance vs Average Performance when
vi ∼ D

2. Achieving A’s welfare exactly vs approximately
3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →

truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



5/17

Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

We implement M(A′, P) s.t.
▶ Returns feasible allocations
▶ Have comparable welfare to A
▶ Is incentive compatible

(DSIC/BIC...)

Many different flavours to the problem:

1. Worst Case performance vs Average Performance when
vi ∼ D

2. Achieving A’s welfare exactly vs approximately
3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →

truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



5/17

Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

Can we implement M(A′, P) s.t ?
▶ Returns feasible allocations
▶ Have comparable welfare to A
▶ Is incentive compatible

(DSIC/BIC...)

Many different flavours to the problem:

1. Worst Case performance vs Average Performance when
vi ∼ D

2. Achieving A’s welfare exactly vs approximately
3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →

truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



5/17

Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

Can we implement M(A′, P) s.t ?
▶ Returns feasible allocations
▶ Have comparable welfare to A
▶ Is incentive compatible

(DSIC/BIC...)

Many different flavours to the problem:
1. Worst Case performance vs Average Performance when

vi ∼ D

2. Achieving A’s welfare exactly vs approximately
3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →

truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



5/17

Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

Can we implement M(A′, P) s.t ?
▶ Returns feasible allocations
▶ Have comparable welfare to A
▶ Is incentive compatible

(DSIC/BIC...)

Many different flavours to the problem:
1. Worst Case performance vs Average Performance when

vi ∼ D
2. Achieving A’s welfare exactly vs approximately

3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →
truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



5/17

Black-Box Mechanism Design

Someone gives us A that
▶ Returns feasible

allocations
▶ Has some welfare

guarantee

Can we implement M(A′, P) s.t ?
▶ Returns feasible allocations
▶ Have comparable welfare to A
▶ Is incentive compatible

(DSIC/BIC...)

Many different flavours to the problem:
1. Worst Case performance vs Average Performance when

vi ∼ D
2. Achieving A’s welfare exactly vs approximately
3. Truthfulness: DSIC vs BIC (Bayesian Incentive Compatible →

truthful in expectation over other agents reports)

E.Gergatsouli, B.Lucier, C.Tzamos Introduction



6/17

Previous Results
Can we find such a reduction from mechanism design to algorithm
design?
Flavours of the problem studied:

▶ Prior-Free Settings
preserve worst
case approx.

{ ▶ Cannot find reduction to get DSIC Mechanism
even for single parameter
[Chawla et al 2012]

▶ Bayesian Settings (vi ∼ D)

preserve expected
welfare within ε



▶ Can find BIC Mechanism, single-parameter
[Hartline, Lucier 2010]

▶ Can find ϵ-BIC Mechanism, multi-parameter
[Hartline et al 2011 and Bei, Huang 2011]

▶ Can find BIC Mechanism, multi-parameter
[Dughmi et al 2017]

E.Gergatsouli, B.Lucier, C.Tzamos Previous and New Results
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What’s left to do?

▶ The picture so far
▶ 7 DSIC reduction, worst-case performance, single-parameter
▶ ✓ BIC reduction, expected performance, multi-parameter

▶ Some questions still remain:
1. Can we find a “stronger than BIC“ reduction that preserves

expected welfare, even for single-parameter agents?
2. Previous BIC results: runtime is polynomial in typespace* size.

→ example: additive agent, with independent values over each
item, typespace is exponential.

Can we avoid runtime dependence on typespace?
→ get a BIC reduction that runs in time poly(n,m)?

*Typespace:
discrete: possible different input profiles
continuous: support size of D
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Main Results (Informal)

▶ 7 No BIC reduction, even for single additive agent over
independent items, with subexponential query complexity

▶ 7 No MIDR reduction even for single parameter settings, with
subexponential query complexity
→ MIDR ⊆ DSIC ⊆ BIC

*7 = M degrades welfare by a polynomial factor with
subexponential queries to A

Up next: intuition for second result.

E.Gergatsouli, B.Lucier, C.Tzamos Previous and New Results
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Lower Bound for MIDR transformations

▶ Objective: maximize welfare
▶ Single-parameter setting with n agents
▶ For every agent: vi ∈ {0, 1}, outcome ∈ {0, 1}

Definition 1 (MIDR)
A is MIDR if for every v, v′ : EA(v)[v · A(v)] ≥ EA(v′)[v · A(v′)]
Essentially: A(v) is best outcome for v in A’s range.

Theorem 1
For any MIDR black-box transformation M with sub exponential
query complexity there exists an algorithm A and distribution D
such that Wel(MA) ≤ Wel(A)

poly(n) .

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Construction Details

Construction: family of algorithms AST, distribution D such that
M degrades welfare

▶ Input distribution D: xi = 1 w.p. 1/(
√n),

▶ Uniformly random hidden sets S, T of size ∼ O(
√n)

with “big enough“ intersection |S ∩ T|

▶ Algorithm AST(x) = x or 0 depending on x
Serve everyone with value 1 or serve no one.
Example:
AS,T(x) = x : 0010101 → 0010101 ✓
AS,T(x) = 0 : 0010101 → 0000000 7

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Illustration of Allocation

▶ If x is too large then AST(x) = ∅
▶ If x is not too large and has no intersection with S and T,

then AST(x) = x

(a)

S T

(b)

S T

|x| >
√n

7
|x| ≤

√n
✓

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Illustration of Allocation
If x is not too large then:
▶ If |x ∩ T| is large, and |x ∩ S| is small then AST(x) = ∅
▶ else AST(x) = x

(c)

S T

(d)

S T

|x ∩ T| large
|x ∩ S| small

7
|x ∩ T| large
|x ∩ S| large

✓

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Lower Bound - Proof Idea

Lemma 1
A has high expected welfare (Ω(

√n))

Proof Idea.
AST(x) = x almost always, result follows from concentration using
construction of S, T and D

Lemma 2
M has polynomially lower welfare than A (O(n1/4))

Lemma 1 + Lemma 2 → Theorem 1

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Lower Bound - Proof Idea

Lemma 2
M has polynomially lower welfare than A (O(n1/4))

Proof Idea.
Prove in 3 steps:

1. AST(T) = 0, and M
cannot find set S with
subexponentially many
samples, so it cannot
find an output with
high welfare for T.

(c)

S T

|x ∩ T| large
|x ∩ S| small

7

Note: we don’t use any truthfulness constraint here

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Lower Bound - Proof Idea
Lemma 2
M has polynomially lower welfare than A (O(n1/4))
Proof Idea.

2. Idea: Because of MIDR,
MA(S) can’t return an
outcome with high
welfare for T. However,
on input S, we cannot
find T → must reduce
welfare throughout. (d)

S T

|x ∩ T| large
|x ∩ S| large

✓

3. MA(x) gives low welfare
(for any input x) Idea:
Cannot decide if x is the
set S or not

(b)

S T

|x| ≤ N
✓

(d)

S T

|x ∩ T| large
|x ∩ S| large

✓

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction



15/17

Lower Bound - Proof Idea
Lemma 2
M has polynomially lower welfare than A (O(n1/4))
Proof Idea.

2. Idea: Because of MIDR,
MA(S) can’t return an
outcome with high
welfare for T. However,
on input S, we cannot
find T → must reduce
welfare throughout. (d)

S T

|x ∩ T| large
|x ∩ S| large

✓

3. MA(x) gives low welfare
(for any input x) Idea:
Cannot decide if x is the
set S or not

(b)

S T

|x| ≤ N
✓

(d)

S T

|x ∩ T| large
|x ∩ S| large

✓

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction



16/17

Second Result

▶ Objective: maximize Wel
▶ Single additive agent, n items

Theorem 2
For any DSIC black-box transformation M with sub exponential
query complexity, there exists an algorithm A and distribution D
such that Wel(MA) ≤ Wel(A)

poly(n)

Note: for single agent, DSIC = BIC ⇒ same result for BIC

Proof follows similarly to MIDR reduction, but
▶ Instead of MIDR condition, uses a characterization of BIC

allocation rules due to [Hartline, Kleinberg, Malekian 2011]

E.Gergatsouli, B.Lucier, C.Tzamos Lower Bound Construction
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Conclusion and Open Problems
Black-box reductions:

reducing mechanism design to algorithm design.

Existing black-box reductions are for BIC mechanisms, and have
polynomial dependence on typespace

We showed two negative results
▶ Remove polynomial dependence on typespace

7 Even for single additive agent over independent types

▶ Change BIC requirement → strengthen BIC to MIDR
7 Even for single parameter settings

Open problem: Can we strengthen BIC to DSIC, while preserving
expected welfare? [Chawla et al 2012]

Thank you!
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