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A Search Problem

Find the best out of n alternatives!
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I Stochastic information on value
I Information is not free!

This paper: focus on minimization
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I Stochastic information on value
I Information is not free!
I Open boxes until decide to stop (stopping rule).
I Keep best value seen so far

Instatiation of values = scenario.

This paper: focus on minimization
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I Stochastic information on value
I Information is not free!

Maximization version: max value - information cost
Minimization version: min value + information cost

This paper: focus on minimization
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A Search Problem - What do we know

Pandora’s Box1 greedy gives optimal!

I Assign an index to every box
I Search boxes in order of index until: current value better than

index of next box

Crucial assumption: distributions are independent!

What about correlation?

1[Weitzman Econometrica 1979]
S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang A Search Problem



4/18

A Search Problem - What do we know

Pandora’s Box1 greedy gives optimal!

I Assign an index to every box
I Search boxes in order of index until: current value better than

index of next box

Crucial assumption: distributions are independent!

What about correlation?

1[Weitzman Econometrica 1979]
S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang A Search Problem



4/18

A Search Problem - What do we know

Pandora’s Box1 greedy gives optimal!

I Assign an index to every box
I Search boxes in order of index until: current value better than

index of next box

Crucial assumption: distributions are independent!

What about correlation?

1[Weitzman Econometrica 1979]
S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang A Search Problem



5/18

Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes
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Example: values 4 and 2 means go to box 42 to find best value

Cannot learn arbitrary mapping with finitely many queries!

Best Strategy: decide next box after seen values. Other strategies?
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Strategies

Strategy: (1) What is next box? (2) When do I stop?

I Fully Adaptive: next box/stopping
rule both adaptive

I Partially Adaptive: fixed order,
adaptive stopping time (for
independent D this gives optimal
policy!)

I Non-Adaptive: fixed order and
stopping time

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Model
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Approximating Other Strategies

I Fully Adaptive: Learning/Approximation: Hard!
Example: encoded location of best box

I Non-Adaptive:
I Learning: Hard!: tiny probability scenario has value=∞ on all

boxes but one→either query all boxes or sample this scenario
I Approximation: As hard as Set Cover! For 0/∞ values → find

a 0 for every scenario → hitting set formulation of set cover

I Partially Adaptive: Can Learn & Efficiently approximate!

Main Theorem
Using polynomially in n samples we can efficiently find a Partially
Adaptive strategy that is O(1)-competitive against the optimal
Partially Adaptive strategy.

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results
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An Easier Partially Adaptive Family

Space of PA strategies can be large! → Scenario-aware PA
SPA: Fix order → scenario is revealed→decide stopping time

Lemma
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.

Proof Sketch: Assume a SPA
order→ need to find a stopping
rule for PA. Stop when best value
seen so far is at most time spent
until nowa.

Time spent earching

Min Value

aArgument is equivalent to Ski-Rental→ can get 1.58 using ski rental algorithm.

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results
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An Easier Partially Adaptive Family

Space of PA strategies can be large! → Scenario-aware PA
SPA: Fix order → scenario is revealed→decide stopping time

Lemma
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.

Focus on SPA then convert to PA losing a factor of 2.
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An Easier Partially Adaptive Family

Lemma
Near-Optimal SPA Strategies can be efficiently learned from
poly(n) number of samples.

Proof Sketch.
Possible permutations: n!
Each permutation has bounded cost→can learn with few
samples→ union bound on all n! permutations.

Enough to find good SPA strategies!

This talk:
1. SPA vs NA

2. SPA vs PA (main result)
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PA vs NA - LP Formulation

minimize
∑
i∈B

xi + 1
|S|

∑
i∈B,s∈S

ciszis (LP-NA)

subject to
∑
i∈B

zis = 1, ∀s ∈ S (1)

zis ≤ xi , ∀i ∈ B, s ∈ S
xi , zis ∈ [0, 1] ∀i ∈ B, s ∈ S

xi : indicates whether box i is opened
zis : indicates whether box i is assigned to scenario s
cis : value in box i for scenario s

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results
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PA vs NA - Algorithm

Given: Solution x, z to LP, scenario s
1. Open box i wp xi∑

i∈B xi

2. If box i is opened, select the box and stop wp zis
xi

Analysis: Bound probing cost + value
I Part 1: bound probing cost

Pr [stop at step t] =
∑
i∈B

xi∑
i∈B xi

zis
xi

=
∑

i∈B zis∑
i∈B xi

= 1
OPTt

,

Probing cost is optimal on expectation

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results
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PA vs NA - Analysis

I Part 2: bound the value
For scenario s

E [ALGc,s ] =
∑

i∈B,t
Pr [select i at t | stop at t] Pr [stop at t] cis

≤
∑

i∈B,t

zis∑
i∈B zis

Pr [stop at t] cis

=
∑
i∈B

ziscis

= OPTc,s

Take expectation over all scenarios E [ALGc ] ≤ OPTc

SPA Approximates NA → lose a 2-factor to convert to PA

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results



13/18

PA vs PA - LP Formulation

LP-SPA LP-MSSC

min 1
|S|
∑

i ,s,t tzist+ 1
|S|
∑

i ,s,t ciszist min 1
|S|
∑

i ,s,t tzist

Subject to: (1) Every time, pick 1 box/set

(2) Every box/set can be chosen at most once

(3) Only choose value/zero of already opened box/set

(4) Choose exactly/at least one box/set per scenario/element

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results
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PA vs PA - Reduction to MSSC

LP-SPA
I = (x, z)

LP-MSSC
I ′ = (x ′, z ′)

Lose a factor
(

α
α−1

)2

Focus on “low cost” boxes
Use MSSC to find one fast

Integer MSSC
I ′′ = pr.
order σ

Lose a factor 4
Round fractional MSSC

Using greedy from
Feige et al. APPROX 2002
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General Costs

So far: probing time/cost pi = 1. General costs?

1. Round each cost to closest integer pi
Costs need to be polynomially bounded

2. Modify LPs
2.1 NA: Add cost to objective∑

i∈B
xi →

∑
i∈B

xi pi

2.2 PA: Each opened box should be probed for pi steps∑
i∈B

xit = 1→
∑
i∈B

∑
t≤t′≤t+pi−1

xit′ ≤ 1

All previous results still hold within constant.
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Summary - Extensions
I Moving the optimal can help us find meaningful

approximations
I PA for minimization of Pandora’s box can be efficiently

approximated

What about maximization?

I We cannot approximate the Non-Adaptive using a Fully
Adaptive within any constant.

Proof Sketch.
Set Cover: sets + elements = Search problem boxes + scenarios
I If element is covered by set ⇒ box has high value for scenario
I Bad scenario with very low cost

Idea: NA is SC, cannot cover a significant portion with any FA

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Conclusion
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Summary - Extensions

What about complex feasibility constraints?

I We can approximate the PA for selecting k items within O(1).
I We can approximate the PA for selecting a matroid base of

rank k within Θ(log k).

Both k items and matroids:
Generalized MSSC2: for each set select at least k(S) elements
Use Generalized MSSC LP for SPA → similar to PA vs NA

2Bansal et al. SODA 2010
S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Conclusion
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Future directions

Our work: tradeoff adaptivity vs computational complexity

Future Directions:
I What can we approximate by fully adaptive strategies?

In this direction→
I Cannot approximate NA within constant.

I Can adaptive methods give efficient algos for hard problems?

Thank you!
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