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A Search Problem

Find the best out of n alternatives!
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A Search Problem

Find the best out of n alternatives!

» Stochastic information on value

» |nformation is not free!

» Open boxes until decide to stop (stopping rule).
» Keep best value seen so far

Instatiation of values = scenario.
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A Search Problem

Find the best out of n alternatives!
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» Stochastic information on value

» Information is not free!

Maximization version: max value - information cost
Minimization version: min value + information cost

This paper: focus on minimization
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A Search Problem - What do we know

Pandora’s Box! greedy gives optimal!

P Assign an index to every box

» Search boxes in order of index until: current value better than
index of next box

[Weitzman Econometrica 1979]
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A Search Problem - What do we know

Pandora’s Box! greedy gives optimal!
P Assign an index to every box

» Search boxes in order of index until: current value better than
index of next box

Crucial assumption: distributions are independent!

[Weitzman Econometrica 1979]
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A Search Problem - What do we know

Pandora’s Box! greedy gives optimal!

P Assign an index to every box

» Search boxes in order of index until: current value better than
index of next box

Crucial assumption: distributions are independent!

What about correlation?

[Weitzman Econometrica 1979]
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Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Box i Box j Box 42

v —

4 2 0
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Example: values 4 and 2 means go to box 42 to find best value
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Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Box i Box j Box 42

4 2 0

Example: values 4 and 2 means go to box 42 to find best value

Cannot learn arbitrary mapping with finitely many queries!
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Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Box i Box j Box 42

v —

4 2 0

El

Example: values 4 and 2 means go to box 42 to find best value
Cannot learn arbitrary mapping with finitely many queries!

Best Strategy: decide next box after seen values. Other strategies?
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Strategies
Strategy: (1) What is next box? (2) When do | stop?

» Fully Adaptive: next box/stopping
rule both adaptive

» Partially Adaptive: fixed order,
adaptive stopping time (for
independent D this gives optimal
policy!)

» Non-Adaptive: fixed order and
stopping time
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Approximating Other Strategies

» Fully Adaptive: Learning/Approximation: Hard!
Example: encoded location of best box

» Non-Adaptive:

» Learning: Hard!: tiny probability scenario has value=oc on all
boxes but one—either query all boxes or sample this scenario

» Approximation: As hard as Set Cover! For 0/00 values — find
a 0 for every scenario — hitting set formulation of set cover

» Partially Adaptive: !

Main Theorem

Using polynomially in n samples we can efficiently find a Partially
Adaptive strategy that is O(1)-competitive against the optimal
Partially Adaptive strategy.
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An Easier Partially Adaptive Family

Space of PA strategies can be large! —
: Fix order — scenario is revealed—decide stopping time

Lemma

For any order, there is an adaptive stopping rule that

2-approximates the optimal Scenario-aware stopping rule.
Proof Sketch: Assume a SPA Min Value
order— need to find a stopping
rule for PA. Stop when best value
seen so far is at most time spent
until now?. ~

Time spent earching

2Argument is equivalent to Ski-Rental— can get 1.58 using ski rental algorithm.
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Space of PA strategies can be large! —
: Fix order — scenario is revealed—decide stopping time

Lemma
For any order, there is an adaptive stopping rule that
2-approximates the optimal Scenario-aware stopping rule.
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An Easier Partially Adaptive Family

Lemma
Near-Optimal SPA Strategies can be efficiently learned from

poly(n) number of samples.

Proof Sketch.

Possible permutations: n!
Each permutation has bounded cost—can learn with few
samples— union bound on all n! permutations. ]
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An Easier Partially Adaptive Family

Lemma
Near-Optimal SPA Strategies can be efficiently learned from

poly(n) number of samples.

Proof Sketch.

Possible permutations: n!
Each permutation has bounded cost—can learn with few
samples— union bound on all n! permutations. ]

This talk:
1. SPA vs NA
2. SPA vs (main result)
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PA vs NA - LP Formulation

minimize ZX,' + Z CisZijs (LP-NA)
ieB IGB seS
subject to Zz,-s = 1, Vse S (1)
ieB
Zis < X, VieB,se8
Xi, Zis € [O, 1] VieB,seS8S

x;: indicates whether box i is opened
Zjs: indicates whether box i is assigned to scenario s
Cis: value in box i for scenario s
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PA vs NA - Algorithm

Given: Solution x, z to LP, scenario s

Xi

1. Open box i wp

ieBXi
2. If box i is opened, select the box and stop wp %=

Analysis: Bound probing cost + value

» Part 1: bound probing cost

Xi Zjs Z'EB Zis 1
Pr [stop at step t] = L oL = ,
,-GZB ZieB Xi Xj ZieB Xj OPT;

Probing cost is optimal on expectation
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PA vs NA - Analysis

» Part 2: bound the value
For scenario s

E[ALG.¢] = Z Pr[select i at t | stop at t] Pr[stop at t] ¢;s
i€B,t

Pr [stop at t] ¢;
lezB:t ZIGB is ®

= Z ZjsCjs
ieB
=OPT.s

| A

Take expectation over all scenarios E [ALG.] < OPT.

— lose a 2-factor to convert to PA

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results



PA vs PA - LP Formulation

LP-SPA LP-MSSC
min ﬁ >is,t tZist+ ﬁ 2_ist CisZist min |§1‘ Dlis,t Wist
Subject to: (1) Every time, pick 1 box/set

(2) Every box/set can be chosen at most once
(3) Only choose value/zero of already opened box/set

(4) Choose exactly/at least one box/set per scenario/element

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Results



PA vs PA - Reduction to MSSC
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PA vs PA - Reduction to MSSC

LP-SPA LP-MSSC
T = (x,2) 7' = (x,2))

2
Lose a factor (a‘jl)
Focus on “low cost” boxes
Use MSSC to find one fast
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PA vs PA - Reduction to MSSC

Integer MSSC

LP-SPA LP-MSSC T
- T = (x.2 = pr
(x.2) (x.2) order o
2
Lose a factor (a‘jl)
Focus on “low cost” boxes Round fractional MSSC

Use MSSC to find one fast Using greedy from
Feige et al. APPROX 2002
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General Costs

So far: probing time/cost p; = 1. General costs?
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General Costs

So far: probing time/cost p; = 1. General costs?

1. Round each cost to closest integer p;
Costs need to be polynomially bounded
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General Costs

So far: probing time/cost p; = 1. General costs?

1. Round each cost to closest integer p;
Costs need to be polynomially bounded
2. Modify LPs
2.1 NA: Add cost to objective

S5
ieB ieB

2.2 PA: Each opened box should be probed for p; steps

Doxe=1=) > xw<l

ieB i€B t<t'<t+pj—1
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General Costs

So far: probing time/cost p; = 1. General costs?

1. Round each cost to closest integer p;
Costs need to be polynomially bounded
2. Modify LPs
2.1 NA: Add cost to objective

S5
ieB ieB

2.2 PA: Each opened box should be probed for p; steps

Doxe=1=) > xw<l

ieB i€B t<t'<t+pj—1

All previous results still hold within constant.
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Summary - Extensions

» Moving the optimal can help us find meaningful
approximations

» PA for minimization of Pandora’s box can be efficiently
approximated

What about maximization?

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Conclusion



Summary - Extensions

» Moving the optimal can help us find meaningful
approximations

» PA for minimization of Pandora’s box can be efficiently
approximated

What about maximization?
» We cannot approximate the Non-Adaptive using a Fully
Adaptive within any constant.

Proof Sketch.
Set Cover: sets + elements = Search problem boxes + scenarios
P If element is covered by set = box has high value for scenario

» Bad scenario with very low cost
Idea: NA is SC, cannot cover a significant portion with any FA [
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Summary - Extensions

What about complex feasibility constraints?

2Bansal et al. SODA 2010
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Summary - Extensions

What about complex feasibility constraints?
> We for selecting

> We for selecting
within ©(log k).

2Bansal et al. SODA 2010
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Summary - Extensions

What about complex feasibility constraints?
> We for selecting within O(1).
> We for selecting
within ©(log k).

Both k items and matroids:
Generalized MSSC2: for each set select at least k(S) elements
Use Generalized MSSC LP for SPA — similar to PA vs NA O

2Bansal et al. SODA 2010
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Future directions
Our work: tradeoff adaptivity vs computational complexity

Future Directions:

> What can we approximate by fully adaptive strategies?
In this direction—

» Cannot approximate NA within constant.

» Can adaptive methods give efficient algos for hard problems?

S. Chawla, E.Gergatsouli, Y. Teng, C.Tzamos, R. Zhang Conclusion



Future directions
Our work: tradeoff adaptivity vs computational complexity

Future Directions:

> What can we approximate by fully adaptive strategies?
In this direction—

» Cannot approximate NA within constant.

» Can adaptive methods give efficient algos for hard problems?

- |
|

Thank you!
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