Pandora's Box with Correlations: Learning and Approximation

Shuchi Chawla¹, *Evangelia Gergatsouli*¹, Yifeng Teng¹, Christos Tzamos¹, Ruimin Zhang¹

¹University of Wisconsin-Madison

CoReLab study group, September 2020

Model

Results

What can we approximate? Reducing Search Space Partially Adaptive vs Non Adaptive Partially Adaptive vs Partially Adaptive Extensions - General Probing Times Extensions - Feasibility Constraints

Conclusion

Summary Future Directions

Find the best out of *n* alternatives!

Find the best out of n alternatives!

Stochastic information on value

Find the best out of n alternatives!

- Stochastic information on value
- Information is not free!

Find the best out of n alternatives!

- Stochastic information on value
- Information is not free!

Find the best out of *n* alternatives!

- Stochastic information on value
- Information is not free!
- Open boxes until decide to stop (*stopping rule*).
- Keep best value seen so far

Instatiation of values = *scenario*.

Find the best out of *n* alternatives!

- Stochastic information on value
- Information is not free!

Maximization version: *max value - information cost* Minimization version: *min value + information cost*

This paper: focus on minimization

A Search Problem - What do we know

Pandora's Box¹ greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current value better than index of next box

¹[Weitzman *Econometrica* 1979]

A Search Problem - What do we know

Pandora's Box¹ greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current value better than index of next box

Crucial assumption: distributions are independent!

¹[Weitzman *Econometrica* 1979]

A Search Problem - What do we know

Pandora's Box¹ greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current value better than index of next box

Crucial assumption: distributions are independent!

What about **correlation**?

¹[Weitzman *Econometrica* 1979]

Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Example: values 4 and 2 means go to box 42 to find best value

Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Example: values 4 and 2 means go to box 42 to find best value

Cannot learn arbitrary mapping with finitely many queries!

Approximating the Optimal

Hard Problem: encode location of best box in values of other boxes

Example: values 4 and 2 means go to box 42 to find best value

Cannot learn arbitrary mapping with finitely many queries!

Best Strategy: decide next box after seen values. Other strategies?

Strategies

Strategy: (1) What is next box? (2) When do I stop?

- Fully Adaptive: next box/stopping rule both adaptive
- Partially Adaptive: fixed order, adaptive stopping time (for independent D this gives optimal policy!)
- Non-Adaptive: fixed order and stopping time

Approximating Other Strategies

Fully Adaptive: Learning/Approximation: Hard! Example: encoded location of best box

Non-Adaptive:

- ► Learning: Hard!: tiny probability scenario has value=∞ on all boxes but one→either query all boxes or sample this scenario
- Approximation: As hard as Set Cover! For 0/∞ values → find a 0 for every scenario → hitting set formulation of set cover
- Partially Adaptive: Can Learn & Efficiently approximate!

Main Theorem

Using polynomially in n samples we can efficiently find a Partially Adaptive strategy that is O(1)-competitive against the optimal Partially Adaptive strategy.

Space of PA strategies can be large! \rightarrow Scenario-aware PA SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Lemma

For any order, there is an adaptive stopping rule that 2-approximates the optimal Scenario-aware stopping rule.

Proof Sketch: Assume a SPA order \rightarrow need to find a stopping rule for PA. Stop when best value seen so far is at most time spent until now^a.

^aArgument is equivalent to Ski-Rentalightarrow can get 1.58 using ski rental algorithm.

Space of PA strategies can be large! \rightarrow Scenario-aware PA SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Lemma

For any order, there is an adaptive stopping rule that 2-approximates the optimal Scenario-aware stopping rule.

Focus on SPA then convert to PA losing a factor of 2.

Lemma

Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Proof Sketch.

Possible permutations: n!Each permutation has bounded cost \rightarrow can learn with few samples \rightarrow union bound on all n! permutations.

Enough to find good SPA strategies!

Lemma

Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Proof Sketch.

Possible permutations: n!Each permutation has bounded cost \rightarrow can learn with few samples \rightarrow union bound on all n! permutations.

Enough to find good SPA strategies! This talk: 1. SPA vs NA

2. SPA vs PA (main result)

PA vs NA - LP Formulation

 x_i : indicates whether box *i* is opened z_{is} : indicates whether box *i* is assigned to scenario *s* c_{is} : value in box *i* for scenario *s*

PA vs NA - Algorithm

Given: Solution $\boldsymbol{x}, \boldsymbol{z}$ to LP, scenario \boldsymbol{s}

1. Open box *i* wp
$$\frac{x_i}{\sum_{i \in \mathcal{B}} x_i}$$

2. If box *i* is opened, select the box and stop wp $\frac{Z_{is}}{x_i}$

Analysis: Bound probing cost + value

Part 1: bound probing cost

$$\Pr[\text{stop at step } t] = \sum_{i \in \mathcal{B}} \frac{x_i}{\sum_{i \in \mathcal{B}} x_i} \frac{z_{is}}{x_i} = \frac{\sum_{i \in \mathcal{B}} z_{is}}{\sum_{i \in \mathcal{B}} x_i} = \frac{1}{\mathsf{OPT}_t},$$

Probing cost is optimal on expectation

PA vs NA - Analysis

Part 2: bound the value For scenario s

$$\begin{split} \mathbf{E} \left[\mathsf{ALG}_{c,s} \right] &= \sum_{i \in \mathcal{B}, t} \mathbf{Pr} \left[\text{select } i \text{ at } t \mid \text{stop at } t \right] \mathbf{Pr} \left[\text{stop at } t \right] c_{is} \\ &\leq \sum_{i \in \mathcal{B}, t} \frac{z_{is}}{\sum_{i \in \mathcal{B}} z_{is}} \mathbf{Pr} \left[\text{stop at } t \right] c_{is} \\ &= \sum_{i \in \mathcal{B}} z_{is} c_{is} \\ &= \mathsf{OPT}_{c,s} \end{split}$$

Take expectation over all scenarios \mathbf{E} [ALG_c] \leq OPT_c

SPA Approximates NA \rightarrow lose a 2-factor to convert to PA

PA vs PA - LP Formulation

LP-SPA LP-MSSC $\min \frac{1}{|S|} \sum_{i,s,t} tz_{ist} + \frac{1}{|S|} \sum_{i,s,t} c_{is} z_{ist} \qquad \min \frac{1}{|S|} \sum_{i,s,t} tz_{ist}$ **Subject to**: (1) Every time, pick 1 box/set (2) Every box/set can be chosen at most once (3) Only choose value/zero of already opened box/set (4) Choose exactly/at least one box/set per scenario/element PA vs PA - Reduction to MSSC

PA vs PA - Reduction to MSSC

PA vs PA - Reduction to MSSC

So far: probing time/cost $p_i = 1$. General costs?

So far: probing time/cost $p_i = 1$. General costs?

 Round each cost to closest integer *p_i* Costs need to be polynomially bounded

So far: probing time/cost $p_i = 1$. General costs?

- Round each cost to closest integer *p_i* Costs need to be polynomially bounded
- 2. Modify LPs

2.1 NA: Add cost to objective

$$\sum_{i\in\mathcal{B}}x_i\to\sum_{i\in\mathcal{B}}x_ip_i$$

2.2 PA: Each opened box should be probed for p_i steps

$$\sum_{i \in \mathcal{B}} x_{it} = 1 \rightarrow \sum_{i \in \mathcal{B}} \sum_{t \le t' \le t + p_i - 1} x_{it'} \le 1$$

So far: probing time/cost $p_i = 1$. General costs?

- Round each cost to closest integer p_i Costs need to be polynomially bounded
- 2. Modify LPs

2.1 NA: Add cost to objective

$$\sum_{i\in\mathcal{B}}x_i\to\sum_{i\in\mathcal{B}}x_ip_i$$

2.2 PA: Each opened box should be probed for p_i steps

$$\sum_{i \in \mathcal{B}} x_{it} = 1 \rightarrow \sum_{i \in \mathcal{B}} \sum_{t \le t' \le t + p_i - 1} x_{it'} \le 1$$

All previous results still hold within constant.

- Moving the optimal can help us find meaningful approximations
- PA for minimization of Pandora's box can be efficiently approximated

What about maximization?

- Moving the optimal can help us find meaningful approximations
- PA for minimization of Pandora's box can be efficiently approximated

What about maximization?

 We cannot approximate the Non-Adaptive using a Fully Adaptive within any constant.

Proof Sketch.

Set Cover: sets + elements = Search problem boxes + scenarios

- If element is covered by set \Rightarrow box has high value for scenario
- Bad scenario with very low cost

Idea: NA is SC, cannot cover a significant portion with any FA $\ \square$

What about complex feasibility constraints?

²Bansal et al. *SODA* 2010

What about complex feasibility constraints?

- We can approximate the PA for selecting k items within O(1).
- We can approximate the PA for selecting a matroid base of rank k within Θ(log k).

What about complex feasibility constraints?

- We can approximate the PA for selecting k items within O(1).
- We can approximate the PA for selecting a matroid base of rank k within Θ(log k).

Both k items and matroids:

Generalized MSSC²: for each set select at least k(S) elements Use Generalized MSSC LP for SPA \rightarrow similar to PA vs NA

²Bansal et al. *SODA* 2010

Future directions

Our work: tradeoff adaptivity vs computational complexity

Future Directions:

 \blacktriangleright What can we approximate by fully adaptive strategies? In this direction \rightarrow

Cannot approximate NA within constant.

Can adaptive methods give efficient algos for hard problems?

Future directions

Our work: tradeoff adaptivity vs computational complexity

Future Directions:

 \blacktriangleright What can we approximate by fully adaptive strategies? In this direction \rightarrow

Cannot approximate NA within constant.

Can adaptive methods give efficient algos for hard problems?

Thank you!