Approximating Pandora's Box with Correlations

Shuchi Chawla¹, *Evangelia Gergatsouli*², Jeremy McMahan², Christos Tzamos^{2,3}

¹University of Texas-Austin, ²University of Wisconsin-Madison, ³University of Athens

APPROX '23, Atlanta GA, September 2023

A Search Problem

Find the best alternative, with costly information!

Information is not free!

- Explore alternatives (open boxes)
 Stop anytime & take best so far

A Search Problem

Find the best alternative, with costly information!

Information is not free!

Explore alternatives (open boxes) > Strategy

Stop anytime & take best so far

Goal: find min cost strategy!

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Partially Adaptive: fix order from beginning

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Crucial assumption: distributions are independent!

What about correlation?

¹(Gittins index)

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Crucial assumption: distributions are independent!

What about correlation?

Our work: Algorithms for Pandora's Box with Correlations

¹(Gittins index)

Pandora's Box with Correlations: Setting

Given:

- m scenarios with probabilities p_i
- n boxes with cost 1
- Matrix of values as below

Goal: Open boxes, stop & pick value **Minimize**: Sum of opening cost + value chosen

Pay total opening cost + value chosen per scenario

	Box 1	Box 2	Box 3	 Box n
$p_1 ightarrow$ Scenario 1:	42	13	15	24
$p_2 ightarrow$ Scenario 2:	0	24	94	 2
÷			÷	
$p_m \rightarrow$ Scenario <i>m</i> :	31	15	9	 2

Previous Work - Overview

Independent Disributions

▶ Weitzman's algorithm is the optimal [Weitzman: Econometrica '79]

Correlated Distributions

▶ 9.22-approx against the PA optimal [Chawla et al.: FOCS '20]

- LP-based algorithm via reduction to Min Sum Set Cover
- Learnable from samples
- ► 4.22-approx against the PA optimal [Gergatsouli, Tzamos: arXiv '23]
 - Extends Weitzman's algorithm
 - Learnable from samples

Previous Work - Overview

Independent Disributions

▶ Weitzman's algorithm is the optimal [Weitzman: Econometrica '79]

Correlated Distributions

- ▶ 9.22-approx against the PA optimal [Chawla et al.: FOCS '20]
 - ► LP-based algorithm via reduction to Min Sum Set Cover
 - Learnable from samples
- ► 4.22-approx against the PA optimal [Gergatsouli, Tzamos: arXiv '23]
 - Extends Weitzman's algorithm
 - Learnable from samples

What about the **Fully Adaptive**?

Question: How hard is <u>PB with correlations</u> against the Fully Adaptive?

Main Result: Pandora's Box equivalent to Uniform Decision Tree

Implications for PB:

- $\tilde{O}(\log m)$ -approx poly-time algorithm
- $\tilde{O}(1/\alpha)$ -approx running in time $n^{\tilde{O}(m^{\alpha})}$ for any $\alpha \in (0, 1)$.
- ▶ It is **not** NP-hard to get superconstant approx assuming ETH.

```
Implications by
[Li et al. SODA '20]
```

Uniform Decision Tree

Given:

- *m* scenarios with probabilities 1/m
- \blacktriangleright *n* tests with cost 1
- Matrix of results as below
- Pay total tests cost per scenario

Goal: Select tests to identify scenario **Minimize**: Sum of test costs

	Test 1	Test 2	Test 3	 Test n
1/m ightarrow Scenario 1:	42	13	15	24
$1/m \rightarrow$ Scenario 2:	0	24	94	 2
:			÷	
1/m ightarrow Scenario m :	9	4	34	 131

Pandora's Box vs Uniform Decision Tree

	Pandora's Box	Uniform Decision Tree
Probabilities	non uniform	uniform
Minimize	opening $cost + value chosen$	total test cost
Stopping time	depends on algorithm	when scenarios are distinguished

How to transform PB to UDT?

Idea: connect Pandora's Box with Uniform Decision Tree via similar problems

UPB_{≤T}: Uniform Pandora's Box with outside option T
 UMSSC_f: Uniform Min Sum Set Cover (with feedback)

A Related Problem: $\mathrm{UPB}_{\leq \mathcal{T}}$

Uniform Pandora's Box with outside option

Given: *m* scenarios, *n* boxes

- Outside option T
- Can stop if: value $\leq T$
- Can pay outside option T and stop

Goal: Open boxes to cover all scenarios Minimize: Sum of opening costs (+outside option)

Box 2 Box 3 \dots Box n Option T Box 1 42 13 47 $1/m \rightarrow$ Scenario 1: 24 $1/m \rightarrow$ Scenario 2: 124 94 ... 2 Т 0 9 $1/m \rightarrow$ Scenario *m*: 10 91 . . . 65 Т Table: Example for T = 42

A Related Problem: UMSSC_{f}

Uniform Min Sum Set Cover with feedback

Given: *m* sets (scenarios), *n* elements (boxes)

- ∞ : Element does **not** belong to set
- ▶ 0: Element belongs to set

Goal: Select elements to cover all sets **Minimize**: Sum of covering times

Element 1 Element 2 Element 3 Element n . . . $1/m \rightarrow$ **Set** 1<mark>0</mark>з ∞q 019 ∞ 42 $1/m \rightarrow$ **Set** 2 099 023 ∞ 57 . . . ∞ 67 $1/m \rightarrow$ **Set** m012 <mark>0</mark>a ∞ 13 · · ·24 ∞ 21

Idea: connect Pandora's Box with Uniform Decision Tree via similar problems

UPB_{≤T}: Uniform Pandora's Box with outside option T
 UMSSC_f: Uniform Min Sum Set Cover (with feedback)

Reduction Overview

Reduction Description

- Choose T_i s.t. enough scenarios have value < T_i
- ▶ run UPB_{T_i}
- repeat by only keeping scenarios that chose outside option T_i

Intuition

- Make probabilities uniform
- Stopping time is simplified
 - \blacktriangleright either find value < T
 - \blacktriangleright or choose T and stop

Reduction Overview

Reduction Description

Intuition

- Create *T* copies of sets for each scenario in UPB_{<T}
- \blacktriangleright simulate outside option T

- $\blacktriangleright \text{ Remove outside option } T$
- Stopping time is clear: need to cover all scenarios

Reduction Overview

Reduction Description

- Add feedback info to every element
- When element (test) is chosen, we get information about scenario realized

Intuition

 Change objective to distinguish scenarios instead of just covering

Conclusion

Question

Pandora's Box with Correlations against the Fully Adaptive

Our Result

Main Result: Pandora's Box equivalent to Uniform Decision Tree

- Connections to well studied problems (Decision Tree, Min Sum Set Cover)
- Reductions still hold with arbitrary box costs
- Mixture of distributions: constant approximation in $n^{m^2/\varepsilon}$ time

Conclusion

Question

Pandora's Box with Correlations against the Fully Adaptive

Our Result

Main Result: Pandora's Box equivalent to Uniform Decision Tree

- Connections to well studied problems (Decision Tree, Min Sum Set Cover)
- Reductions still hold with arbitrary box costs
- Mixture of distributions: constant approximation in $n^{m^2/\varepsilon}$ time

Thank you!

