# Approximating Pandora's Box with Correlations 

Shuchi Chawla ${ }^{1}$, Evangelia Gergatsouli ${ }^{2}$, Jeremy McMahan ${ }^{2}$, Christos Tzamos ${ }^{2,3}$<br>${ }^{1}$ University of Texas-Austin, ${ }^{2}$ University of Wisconsin-Madison, ${ }^{3}$ University of Athens

APPROX '23, Atlanta GA, September 2023

## A Search Problem

Find the best alternative, with costly information!


- Information is not free!
$\left.\begin{array}{l}\text { Explore alternatives (open boxes) } \\ \text { - Stop anytime \& take best so far }\end{array}\right\}$ Strategy


## A Search Problem

Find the best alternative, with costly information!


- Information is not free!
$\left.\begin{array}{l}\text { - Explore alternatives (open boxes) } \\ \text { - Stop anytime \& take best so far }\end{array}\right\}$ Strategy Goal: find min cost strategy!


## Previous Work

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value $\sigma_{i}$ for every box ${ }^{1}$
- Search boxes in order of increasing index until:
- Current min price seen smaller than index of next box

[^0]
## Previous Work

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value $\sigma_{i}$ for every box ${ }^{1}$
- Search boxes in order of increasing index until:
- Current min price seen smaller than index of next box


# Partially Adaptive: 

fix order from beginning

[^1]
## Previous Work

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value $\sigma_{i}$ for every box ${ }^{1}$
- Search boxes in order of increasing index until:
- Current min price seen smaller than index of next box

Crucial assumption: distributions are independent!
What about correlation?

## Previous Work

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value $\sigma_{i}$ for every box ${ }^{1}$
- Search boxes in order of increasing index until:
- Current min price seen smaller than index of next box

Crucial assumption: distributions are independent!
What about correlation?
Our work: Algorithms for Pandora's Box with Correlations

## Pandora's Box with Correlations: Setting

Given:

- $m$ scenarios with probabilities $p_{i}$
- $n$ boxes with cost 1
- Matrix of values as below

Goal: Open boxes, stop \& pick value Minimize: Sum of opening cost + value chosen

- Pay total opening cost + value chosen per scenario

|  | Box 1 | Box 2 | Box 3 | $\ldots$ | Box n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{1} \rightarrow$ Scenario 1: | 42 | 13 | 15 |  | 24 |
| $p_{2} \rightarrow$ Scenario 2: | 0 | 24 | 94 | $\ldots$ | 2 |
| $\quad \vdots$ |  |  | $\vdots$ |  |  |
| $p_{m} \rightarrow$ Scenario $m:$ | 31 | 15 | 9 | $\ldots$ | 2 |

## Previous Work - Overview

## Independent Disributions

- Weitzman's algorithm is the optimal [Weitzman: Econometrica '79]


## Correlated Distributions

- 9.22-approx against the PA optimal [Chawla et al.: FOCS '20]
- LP-based algorithm via reduction to Min Sum Set Cover
- Learnable from samples
- 4.22-approx against the PA optimal [Gergatsouli, Tzamos: arXiv '23]
- Extends Weitzman's algorithm
- Learnable from samples


## Previous Work - Overview

## Independent Disributions

- Weitzman's algorithm is the optimal [Weitzman: Econometrica '79]


## Correlated Distributions

- 9.22-approx against the PA optimal [Chawla et al.: FOCS '20]
- LP-based algorithm via reduction to Min Sum Set Cover
- Learnable from samples
- 4.22-approx against the PA optimal [Gergatsouli, Tzamos: arXiv '23]

What about the Fully Adaptive?

- Extends Weitzman's algorithm
- Learnable from samples


## Our Results

Question: How hard is PB with correlations against the Fully Adaptive?

## Main Result: Pandora's Box equivalent to Uniform Decision Tree

## Implications for PB:

- $\tilde{O}(\log m)$-approx poly-time algorithm
- $\tilde{O}(1 / \alpha)$-approx running in time $n^{\tilde{O}\left(m^{\alpha}\right)}$ for any $\alpha \in(0,1)$.
- It is not NP-hard to get superconstant approx assuming ETH.

Implications by
[Li et al. SODA '20]

## Uniform Decision Tree

Given:

- $m$ scenarios with probabilities $1 / m$
- $n$ tests with cost 1
- Matrix of results as below
- Pay total tests cost per scenario

|  | Test 1 | Test 2 | Test 3 | $\ldots$ | Test n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / m \rightarrow$ Scenario 1: | 42 | 13 | 15 |  | 24 |
| $1 / m \rightarrow$ Scenario 2: | 0 | 24 | 94 | $\ldots$ | 2 |
| $\quad \vdots$ |  |  | $\vdots$ |  |  |
| $1 / m \rightarrow$ Scenario $m:$ | 9 | 4 | 34 | $\ldots$ | 131 |

## Pandora's Box vs Uniform Decision Tree

|  | Pandora's Box | Uniform Decision Tree |
| :---: | :---: | :---: |
| Probabilities | non uniform | uniform |
| Minimize | opening cost + value chosen | total test cost |
| Stopping time | depends on algorithm | when scenarios are distinguished |

How to transform PB to UDT?

## Roadmap of Results

Idea: connect Pandora's Box with Uniform Decision Tree via similar problems


- $\mathrm{UPB}_{\leq T}$ : Uniform Pandora's Box with outside option $T$
- $\mathrm{UMSSC}_{f}$ : Uniform Min Sum Set Cover (with feedback)


## A Related Problem: $\mathrm{UPB}_{\leq T}$

## Uniform Pandora's Box with outside option

Given: $m$ scenarios, $n$ boxes

- Outside option $T$
- Can stop if: value $\leq T$
- Can pay outside option $T$ and stop

Goal: Open boxes to cover all scenarios Minimize: Sum of opening costs
(+outside option)

|  | Box 1 | Box 2 | Box 3 | $\ldots$ | Box n | Option $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / m \rightarrow$ Scenario 1: | 42 | 13 | 47 |  | 24 | $T$ |
| $1 / m \rightarrow$ Scenario 2: | 0 | 124 | 94 | $\ldots$ | 2 | $T$ |
| $\quad \vdots$ |  |  | $\vdots$ |  |  |  |
| $1 / m \rightarrow$ Scenario $m:$ | 10 | 91 | 9 | $\ldots$ | 65 | $T$ |

Table: Example for $T=42$

## A Related Problem: $\mathrm{UMSSC}_{f}$

## Uniform Min Sum Set Cover with feedback

Given: $m$ sets (scenarios), $n$ elements (boxes)

- $\quad$ : Element does not belong to set
- 0: Element belongs to set

Goal: Select elements to cover all sets Minimize: Sum of covering times

|  | Element 1 | Element 2 | Element 3 | $\ldots$ | Element $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / m \rightarrow$ Set 1 | $0_{3}$ | $\infty_{9}$ | $\infty_{42}$ |  | $0_{19}$ |
| $1 / m \rightarrow$ Set 2 | $0_{99}$ | $0_{23}$ | $\infty_{57}$ | $\ldots$ | $\infty_{67}$ |
| $\vdots$ |  |  | $\vdots$ |  |  |
| $1 / m \rightarrow$ Set $m$ | $\infty_{13}$ | $0_{12}$ | $0_{9}$ | $\cdots 24$ | $\infty_{21}$ |

## Roadmap of Results

Idea: connect Pandora's Box with Uniform Decision Tree via similar problems


- $\mathrm{UPB}_{\leq T}$ : Uniform Pandora's Box with outside option $T$
- $\mathrm{UMSSC}_{f}$ : Uniform Min Sum Set Cover (with feedback)


## Reduction Overview



## Reduction Description

## Intuition

- Choose $T_{i}$ s.t. enough scenarios have value $<T_{i}$
- run $\mathrm{UPB}_{T_{i}}$
- repeat by only keeping scenarios that chose outside option $T_{i}$
- Make probabilities uniform
- Stopping time is simplified
- either find value $<T$
- or choose $T$ and stop


## Reduction Overview



## Reduction Description

- Create $T$ copies of sets for each scenario in $\mathrm{UPB}_{\leq T}$
- simulate outside option $T$

Intuition

- Remove outside option $T$
- Stopping time is clear: need to cover all scenarios


## Reduction Overview



## Reduction Description

- Add feedback info to every element
- When element (test) is chosen, we get information about scenario realized


## Intuition

- Change objective to distinguish scenarios instead of just covering


## Conclusion

## Question

Pandora's Box with Correlations against the Fully Adaptive

## Our Result

## Main Result: Pandora's Box equivalent to Uniform Decision Tree

- Connections to well studied problems (Decision Tree, Min Sum Set Cover)
- Reductions still hold with arbitrary box costs
- Mixture of distributions: constant approximation in $n^{m^{2} / \varepsilon}$ time


## Conclusion

## Question

Pandora's Box with Correlations against the Fully Adaptive

## Our Result

## Main Result: Pandora's Box equivalent to Uniform Decision Tree

- Connections to well studied problems (Decision Tree, Min Sum Set Cover)
- Reductions still hold with arbitrary box costs
- Mixture of distributions: constant approximation in $n^{m^{2} / \varepsilon}$ time

Thank you!



[^0]:    ${ }^{1}$ (Gittins index)

[^1]:    ${ }^{1}$ (Gittins index)

