Pandora's Box with Correlations: Learning and Approximation

Shuchi Chawla¹, Evangelia Gergatsouli¹, Yifeng Teng¹, Christos Tzamos¹, Ruimin Zhang¹

¹University of Wisconsin-Madison

ACAC, August 2020

Find the best out of *n* alternatives!

Find the best out of *n* alternatives!

Stochastic information on price

Find the best out of *n* alternatives!

- ► Stochastic information on price
- ► Information is not free!

Find the best out of n alternatives!

- Stochastic information on price
- ► Information is not free!

Find the best out of *n* alternatives!

- Stochastic information on price
- Information is not free!
- ▶ Open boxes until decide to stop (*stopping rule*).
- Keep best price seen so far

Instantiation of prices = scenario

Find the best out of *n* alternatives!

- Stochastic information on price
- Information is not free!

Maximization version: *max price - information cost* Minimization version: *min price + information cost*

This paper: focus on minimization

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are **independent**!

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are **independent**!

What about correlation?

Our setting: sample access, arbitrarily correlated \mathcal{D} 's

Pandora's Box [Weitzman '79] greedy gives optimal!

- Assign an index to every box
- Search boxes in order of index until: current price better than index of next box

Crucial assumption: distributions are **independent**!

What about correlation?

Our setting: sample access, arbitrarily correlated \mathcal{D} 's

Related but different: Optimal Decision Tree (require small support/explicit distributions)

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price

Cannot learn arbitrary mapping with finitely many samples!

Approximating the Optimal

Hard Problem: encode location of best box in prices of other boxes

Example: prices 4 and 2 means go to box 42 to find best price

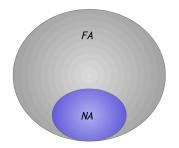
Cannot learn arbitrary mapping with finitely many samples!

Best Strategy: decide next box after seen prices. Other strategies?

Strategies

Strategy: (1) What is next box? (2) When do I stop?

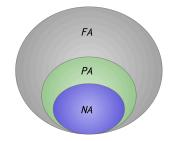
- Fully Adaptive: next box/stopping rule both adaptive
- Non-Adaptive: fixed order and stopping time
 Fixed stopping time: fix a set of boxes to open all at once, decide which to pick



Strategies

Strategy: (1) What is next box? (2) When do I stop?

Partially Adaptive: fixed order, adaptive stopping time (for independent D this gives optimal policy!)



Approximating Other Strategies

- ► Fully Adaptive: Learning/Approximation: Hard! Example: encoded location of best box
- ► Non-Adaptive:
 - ► Learning: Hard!: tiny probability scenario has price=∞ on all boxes but one→either query all boxes or sample this scenario
 - ▶ Approximation: As hard as Set Cover! For $0/\infty$ prices \rightarrow find a 0 for every scenario \rightarrow hitting set formulation of set cover
- ► Partially Adaptive: Can Learn & Efficiently approximate!

Main Theorem

Using polynomially in n sampled scenarios we can efficiently find a Partially Adaptive strategy that is O(1)-competitive against the optimal Partially Adaptive strategy.

Space of PA strategies can be large! \rightarrow Scenario-aware PA

SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Algorithm:

- 1. Draw samples of scenarios
- 2. Design good SPA strategy using samples
- 3. Find stopping rule that performs well

Space of PA strategies can be large! \rightarrow Scenario-aware PA

SPA: Fix order \rightarrow scenario is revealed \rightarrow decide stopping time

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- Find stopping rule that performs well (Myopic Stopping Lemma)

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)

For any order, there is an adaptive stopping rule that 2-approximates the optimal Scenario-aware stopping rule.

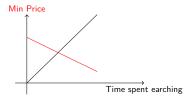
Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)

For any order, there is an adaptive stopping rule that 2-approximates the optimal Scenario-aware stopping rule.

Proof Sketch: Assume a SPA order→ need to find a stopping rule for PA. Stop when best price seen so far is at most time spent until now^a.



^aArgument is equivalent to Ski-Rentalightarrow can get 1.58 using ski rental algorithm

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma (Myopic Stopping)

For any order, there is an adaptive stopping rule that 2-approximates the optimal Scenario-aware stopping rule.

Focus on SPA then convert to PA losing a factor of 2.

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma

Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma

Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Proof Sketch.

Possible permutations: n!

Each permutation has bounded cost \rightarrow can learn with few samples \rightarrow union bound on all n! permutations.

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Lemma

Near-Optimal SPA Strategies can be efficiently learned from poly(n) number of samples.

Enough to find good SPA strategies!

Algorithm:

- 1. Draw samples of scenarios (Learning Lemma)
- 2. Design good SPA strategy using samples (Main Algorithm)
- 3. Find stopping rule that performs well (Myopic Stopping Lemma)

Main Result: SPA vs PA

This talk: Focus on SPA vs NA

PA vs NA - LP Formulation

$$\begin{array}{llll} \text{minimize} & \sum_{i \in \mathcal{B}} x_i & + & \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{B}, s \in \mathcal{S}} c_{is} z_{is} & \text{(LP-NA)} \\ \\ \text{subject to} & \sum_{i \in \mathcal{B}} z_{is} & = & 1, & \forall s \in \mathcal{S} & \text{(1)} \\ \\ & z_{is} & \leq & x_i, & \forall i \in \mathcal{B}, s \in \mathcal{S} \\ & x_i, z_{is} & \in & [0,1] & \forall i \in \mathcal{B}, s \in \mathcal{S} \end{array}$$

 x_i : indicates whether box i is opened

 z_{is} : indicates whether box i is assigned to scenario s

c_{is}: price in box i for scenario s

PA vs NA - Algorithm

Given: Solution x, z to LP, scenario s

- 1. Open box i wp $\frac{x_i}{\sum_{i \in \mathcal{B}} x_i}$
- 2. If box i is opened, select the box and stop wp $\frac{z_{is}}{x_i}$

Analysis: Bound probing cost + price

Part 1: bound probing cost

$$\Pr[\text{stop at step } t] = \sum_{i \in \mathcal{B}} \frac{x_i}{\sum_{i \in \mathcal{B}} x_i} \frac{z_{is}}{x_i} = \frac{\sum_{i \in \mathcal{B}} z_{is}}{\sum_{i \in \mathcal{B}} x_i} = \frac{1}{\mathsf{OPT}_t},$$

Probing cost is optimal on expectation

PA vs NA - Analysis

► Part 2: bound the price For scenario *s*

$$\begin{aligned} \mathbf{E} \left[\mathsf{ALG}_{c,s} \right] &= \sum_{i \in \mathcal{B},t} \mathbf{Pr} \left[\mathsf{select} \ i \ \mathsf{at} \ t \ | \ \mathsf{stop} \ \mathsf{at} \ t \right] \mathbf{Pr} \left[\mathsf{stop} \ \mathsf{at} \ t \right] c_{is} \\ &\leq \sum_{i \in \mathcal{B},t} \frac{z_{is}}{\sum_{i \in \mathcal{B}} z_{is}} \mathbf{Pr} \left[\mathsf{stop} \ \mathsf{at} \ t \right] c_{is} \\ &= \sum_{i \in \mathcal{B}} z_{is} c_{is} \\ &= \mathsf{OPT}_{c,s} \end{aligned}$$

Take expectation over all scenarios $\mathbf{E}[ALG_c] \leq OPT_c$

SPA Approximates NA \rightarrow lose a 2-factor to convert to PA

Showed: Can approximate NA with PA within 2.

Showed: Can approximate NA with PA within 2. Other settings?

	Choose 1	Choose k	Matroid rank k
PA vs PA (Upper-bound)	9.22	O(1)	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Showed: Can approximate NA with PA within 2. **Other settings?**

	Choose 1	Choose k	Matroid rank <i>k</i>
PA vs PA (Upper-bound)	9.22	O(1)	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Main Result: related to Min Sum Set Cover [Feige et al. 2002]

Choose k, matroid: Related to Generalized Min Sum Set Cover [Bansal et al. 2010 & Skutella, Williamson 2011]

Showed: Can approximate NA with PA within 2. **Other settings?**

	Choose 1	Choose k	Matroid rank <i>k</i>
PA vs PA (Upper-bound)	9.22	O(1)	$O(\log k)$
FA vs NA (Lower-bound)	1.27	1.27	$\Omega(\log k)$

Table: Summary of Results

Main Result: related to Min Sum Set Cover [Feige et al. 2002]

Choose k, matroid: Related to Generalized Min Sum Set Cover [Bansal et al. 2010 & Skutella, Williamson 2011]

Maximization: Cannot approximate the Non-Adaptive using a Fully Adaptive within any constant.

Future directions

Our work: tradeoff adaptivity vs computational complexity

Future Directions:

- What can we approximate by fully adaptive strategies?
- Can we get adaptive algorithms for more general combinatorial problems?

Future directions

Our work: tradeoff adaptivity vs computational complexity

Future Directions:

- What can we approximate by fully adaptive strategies?
- Can we get adaptive algorithms for more general combinatorial problems?

Thank you!