Opening Pandora's Box: the Correlated Case

Evangelia Gergatsouli

University of Wisconsin-Madison

Joint work with: Shuchi Chawla¹, Yifeng Teng², Jeremy McMahan³, Christos Tzamos^{3,4}, Ruimin Zhang² ¹UT-Austin, ²Google Research, ³UW-Madison, ⁴University of Athens

INFORMS '23, Phoenix AZ, October 2023

A Search Problem

Find the best alternative, with costly information!

Information is not free!

- Explore alternatives (open boxes)
 Stop anytime & take best so far

A Search Problem

Find the best alternative, with costly information!

- Information is not free!
- Explore alternatives (open boxes)
 Stop anytime & take best so far

Goal: find min cost strategy!

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate reservation value σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Partially Adaptive: fix order from beginning

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Crucial assumption: distributions are independent!

What about correlation?

¹(Gittins index)

Weitzman's algorithm gives the optimal! [Weitz 1979]

- Calculate *reservation value* σ_i for every box¹
- Search boxes in order of increasing index until:
 - Current min price seen <u>smaller</u> than <u>index of next box</u>

Crucial assumption: distributions are independent!

What about correlation?

Our work: Algorithms for Pandora's Box with Correlations

¹(Gittins index)

Why Correlation?

Pandora's Box with Correlations: Setting

Given:

- \blacktriangleright *m* scenarios with probabilities p_i
- Matrix of values as below

Goal: Open boxes, stop & pick value **Minimize**: Sum of opening cost + value chosen

	Box 1	Box 2	Box 3	 Box n	
$p_1 ightarrow$ Scenario 1:	42	13	15	24	
$p_2 \rightarrow$ Scenario 2:	0	24	94	 2	
÷			:		\mathcal{D}
$p_m ightarrow$ Scenario <i>m</i> :	31	15	9	 2	

Finding the Optimal

Sample access to $\ensuremath{\mathcal{D}}$

Can we approximate the optimal? \rightarrow No: arbitrarily encode location of box

Cannot learn arbitrary mapping with finitely many queries

Finding the Optimal

Sample access to $\ensuremath{\mathcal{D}}$

Can we approximate the optimal? \rightarrow No: arbitrarily encode location of box

Cannot learn arbitrary mapping with finitely many queries

Explicitly given $\ensuremath{\mathcal{D}}$

Can we approximate the optimal? \rightarrow (probably) Not within constant in poly-time

Why? Pandora's Box equivalent to Uniform Decision Tree [Chawla, <u>G</u>., McMahan, Tzamos, APPROX '23]

- $\tilde{O}(\log m)$ in poly-time
- $\tilde{O}(1/\alpha)$ in time $n^{\tilde{O}(m^{\alpha})}$ for $\alpha \in (0,1)$.

Strategies

Strategy: (1) what is the next box? (2) when do we stop?

- Fully Adaptive (FA): next box/stopping rule both adaptive
- ▶ Partially Adaptive (PA): fixed order, adaptive stopping time

Optimal for Independent!

Strategies

Strategy: (1) what is the next box? (2) when do we stop?

- Fully Adaptive (FA): next box/stopping rule both adaptive
- Partially Adaptive (PA): fixed order, adaptive stopping time

Optimal for Independent!

Our results: We can approximate PA within **constant**

- 9.22-approx [Chawla, <u>G</u>, Teng, Tzamos, Zhang FOCS '20]
- ► 4.42-approx [G, Tzamos, NeurIPS 2023]

Initial Approach

Recall Strategy: (1) decide order (2) decide stopping time **Idea**: separately decide (1) and (2)

Algorithm in 2 parts:

This Algorithm: 9.22-approx to the Partially Adaptive optimal

A Simpler Approach

- Calculate a reservation value σ_i for every box *i* for every round
- Open box *b* with min σ_i , stop if $v_b \leq \sigma_b$
- Box is now free $c_b = 0$
- Update Prior with $v_b > \sigma_b$

This Algorithm: 4.42-approx to the Partially Adaptive optimal

A Simpler Approach

- Calculate a reservation value σ_i for every box *i* for every round
- Open box b with min σ_i , stop if $v_b < \sigma_b$
- **b** Box is now free $c_b = 0$
- Update Prior with $v_b > \sigma_b$

Almost tight: **4** is best possible!

This Algorithm: 4.42-approx to the Partially Adaptive optimal

Summary & Similar settings

Correlated Distributions

- vs Fully Adaptive: equivalent to Uniform Decision Tree [Chawla, G., McMahan, Tzamos: APPROX '23]
- vs Partially Adaptive: constant approximation, results even for combinatorial settings [Chawla, <u>G.</u>, Teng, Tzamos, Zhang : FOCS '20, <u>G.</u> & Tzamos: NeurIPS '23]
 - k boxes (constant approx), matroid of basis k (log k-approx)
 - all algorithms learnable from samples
 - maximization: cannot approximate within constant unless P=NP
- Online setting: play a new instance of the game for T rounds:
 - ▶ approx. no regret algorithms for adversarial instances [G. & Tzamos: ICML '22]
 - No regret algorithms when context is available (using independent boxes) [Atsidakou, Caramanis, G., Papadigenopoulos, Tzamos: ArXiv '22]

Similar Settings

Many more work on variants of original

- ▶ Non-obligatory inspection [STOC '23: Beyhaghi, Cai & Fu, Li, Liu] (next talk!)
- Order-constrained [Boodaghians et al.: EC '20]
- Commited Pandora's Box [Fu, Li, Xu: ICALP '18, Segev, Singla: EC '21]
- Combinatorial costs [Berger, Ezra, Feldman, Fusco: EC '23]

many more...

Survey: Recent Developments in Pandora's Box Problem: Variants and Applications [Beyhaghi, Cai, 2023]

Thank you!

