# Prophet Secretary Against the Online Optimal

Paul Dütting<sup>1</sup>, *Evangelia Gergatsouli*<sup>2</sup>, Rojin Rezvan<sup>3</sup>, Yifeng Teng<sup>1</sup>, Alexandros Tsigonias-Dimitriadis<sup>4</sup>

<sup>1</sup>Google Research, <sup>2</sup>University of Wisconsin-Madison, <sup>3</sup>University of Texas-Austin, <sup>4</sup>Universidad de Chile

EC, London UK, July 2023

#### The Prophet Problem



- Algorithm: irrevocably select or discard at each step
- Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$

#### The Prophet Problem



- Algorithm: irrevocably select or discard at each step
- Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
   Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
   Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
   Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
   Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
- Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$



- Algorithm: irrevocably select or discard at each step
- Goal: maximize the value selected
- **Benchmark**: all knowing Prophet:  $\mathbb{E}[\max_i X_i]$

State of the Art



### Our Question

#### **Our Benchmark: Online Optimal**

Remaining variables  

$$OPT(X|B) = \mathbb{E}\left[\max(X, \frac{1}{|B|} \sum_{X_i \in B} \text{subproblem without } X_i)\right]$$
Current variable

#### **Original benchmark:** Prophet $(\mathbb{E}[\max_i X_i])$

- Pessimistic benchmark!
- Many problems use Online Optimal (e.g. Matching [Papadimitriou et al. '21, Braverman et al. '21, Naor et al. '23], Prophet Inequalities [Niazadeh et al. '18], Pandora's Box-type problems [Weitzman '79, Chakraborty et al. '10, Fu et al '18, Singla & Segev '21, Liu et al. '21])

#### Our Results

#### Can we compete against the Online Optimal? Yes!

#### PTAS



#### Our Results

#### Can we compete against the Online Optimal? Yes!

#### **QPTAS**

There exists an algorithm with

- $(1 \varepsilon)$ -approximation
- ▶ running time  $n^{f(\varepsilon) \cdot \text{polylog } n}$

against the Online Optimal.

There exists an algorithm with

PTAS

- ▶  $(1 \varepsilon)$ -approximation
- ▶ running time  $n^{f(\varepsilon)}$

against the Online Optimal.

#### This presentation: First QPTAS, then PTAS

### **Online Optimal Revisited**

**DP for Online Optimal**:

$$OPT(X|\mathcal{B}) = \mathbb{E}\left[\max(X, \frac{1}{|\mathcal{B}|} \sum_{X_i \in \mathcal{B}} \text{subproblem without } X_i)\right]$$
Size is *n*!

**Key observation:** for constantly many different "types" (groups), DP size is polynomial

# **Online Optimal Revisited**

**Key observation:** for constant different "types" (groups), DP size is polynomial

 $k_i$ : variables remaining in group *i*  $OPT(X|k_1,\ldots,k_{\varphi}) =$  $\mathbb{E}\left[\max\left(X,\frac{1}{K}\sum_{i\in[g]}k_i\cdot(\text{subproblem with }k_i-1)\right)\right]$ Total Variables remaining Size is  $\left(\frac{n}{g}\right)^g$  for g groups **QPTAS**:  $g = \text{const} \cdot \text{poly} \log n$ 

**PTAS**: 
$$g = const$$

### **Online Optimal Revisited**

**Key observation:** for constant different "types" (groups), DP size is polynomial

 $k_i$ : variables remaining in group i $OPT(X|k_1, ..., k_g) =$   $\mathbb{E}\left[\max\left(X, \frac{1}{K}\sum_{i \in [g]} k_i \cdot (\text{subproblem with } k_i - 1)\right)\right]$ Total variables remaining

Size is  $\left(\frac{n}{g}\right)^g$  for g groups

Idea: discretize variables into g groups while being close to OPT

All variables 
$$X_i = \begin{cases} v_i & \text{, w.p. } p_i \\ 0 & \text{, w.p. } 1 - p_i \end{cases}$$

**Algorithm Steps:** 



All variables 
$$X_i = \begin{cases} v_i & \text{, w.p. } p_i \\ 0 & \text{, w.p. } 1 - p_i \end{cases}$$

#### **Algorithm Steps:**



Preprocessing: Remove "low" value  $X_i$ 's

All variables 
$$X_i = \begin{cases} v_i & \text{, w.p. } p_i \\ 0 & \text{, w.p. } 1 - p_i \end{cases}$$

#### **Algorithm Steps:**



Preprocessing: Remove "low" value  $X_i$ 's Discretization: round  $p_i$ s &  $v_i$ s

All variables 
$$X_i = \begin{cases} v_i & \text{, w.p. } p_i \\ 0 & \text{, w.p. } 1 - p_i \end{cases}$$

#### **Algorithm Steps:**



# Preprocessing & Discretization



### Preprocessing & Discretization

#### Discretization Va Case 1: round down p<sub>i</sub> Case 2 Cannot Exist and $v_i$ to closest $(1 + \varepsilon)^k$ $1/\varepsilon^2$ **Case 2**: set $v'_i = v_{\max} \&$ set $p'_i \leftarrow \frac{v_i p_i}{v_{max}}$ Case 1 ε Total loss: $\varepsilon^2 OPT$ . Preprocessing Groups created: $O\left(\frac{\log^2 n/\varepsilon}{\log^2(1+\varepsilon)}\right)$ . $\varepsilon^3/n$ <u>ج</u>2

# Final Step



#### Putting it all together:

► Loss is 
$$O(\varepsilon)$$
OPT  
► Total groups  $O\left(\frac{\log^2 n/\varepsilon}{\log^2(1+\varepsilon)}\right) \Rightarrow$  runtime is  $n^{\frac{\log^2 n/\varepsilon}{\log^2(1+\varepsilon)}}$ 

General distributions?

- Step 1: generalize to support size c (constant)
- Step 2: the general case

- Step 1: generalize to support size c (constant)
  - Variables of the form

$$X_{i} = \begin{cases} v_{1} & \text{w.p. } p_{1} \\ v_{2} & \text{w.p. } p_{2} \\ \cdots \\ v_{c} & \text{w.p. } p_{c} \end{cases}$$

- Variables in same group if same support after discretization
- k: # of (value, probability) pairs
- Total possible groups  $\binom{c}{k} \approx k^c$
- Step 2: the general case



- Step 1: generalize to support size c (constant)
  - Variables of the form

$$X_{i} = \begin{cases} v_{1} & \text{w.p. } p_{1} \\ v_{2} & \text{w.p. } p_{2} \\ \cdots \\ v_{c} & \text{w.p. } p_{c}, \end{cases}$$

- Variables in same group if same support after discretization
- ▶ k: # of (value, probability) pairs
- Total possible groups  $\binom{c}{k} \approx k^c$
- Step 2: the general case



 $X_1$  and  $X_2$  **NOT** same group  $X_1$  and  $X_3$  **IN** same group

**Runtime**: 
$$O\left(n^{f(\varepsilon,c) \cdot \operatorname{poly} \log n}\right)$$

- Step 1: generalize to support size c (constant)
- Step 2: the general case
  - Make 0 all  $v_i \leq \varepsilon$
  - Collapse support above 1 to single point
  - Discretize support below 1
  - Reduce to constant support case with  $c = O\left(\frac{\log 1/\varepsilon}{\log(1+\varepsilon)}\right)$



**Runtime**: 
$$O\left(n^{f(\varepsilon,c)\cdot \operatorname{poly} \log n}\right)$$

Problem with previous discretization:

# of probability values depends on n



# PTAS

Problem with previous discretization:

# of probability values depends on  $\mathit{n}$ 



#### Preprocessing:

- Remove "low" value & low probability X<sub>i</sub>'s
- Discretize X<sub>i</sub>'s with "high"-er probability

# PTAS

Problem with previous discretization:

# of probability values depends on n



#### Frontloading:

- Split instance into blocks per support value v
- At beginning of block B<sup>v</sup><sub>i</sub> flip coin to decide if accept v



# PTAS

Problem with previous discretization:

# of probability values depends on n



Use thresholds from  $\mathcal{I}''$  on initial instance  $\mathcal{I}$  losing  $O(\varepsilon)$ .

**Runtime**:  $n^{(1/\varepsilon)^{\text{poly}1/\varepsilon}}$ 



#### Prophet Secretary against the Online Optimal

• Result 1 (QPTAS):  
(1 - 
$$\varepsilon$$
) approximation in time  $n^{f(\varepsilon) \cdot \text{polylog } n}$ 

#### • Result 2 (PTAS): (1 - $\varepsilon$ ) approximation in time $n^{f(\varepsilon)}$

# Thank you!